DOE Sets Exascale Pricetag

By Tiffany Trader

September 16, 2013

The United States Department of Energy has announced a plan to field an exascale system by 2022, but says in order to meet this objective it will require an investment of $1 billion to $1.4 billion for targeted research and development. The DOE’s June 2013 “Exascale Strategy” report to Congress was recently obtained by FierceGovernmentIT.

The report makes it clear that exascale systems, one-hundred to one-thousand times faster than today’s petascale supercomputers, are needed to maintain a competitive advantage in both the science and the security domain. The DOE notes that exascale computing will be essential to the processing of future datasets in areas like combustion, climate and astrophysics and claims that there is “significant leverage in addressing the challenges of large scale simulations and large scale data analysis together.”

But before practical exascale machines can become a reality, there are several pretty major obstacles that need to be addressed. Among these are the energy issue; system balance and the memory wall; resiliency and coping with run-time errors; and exploiting massive parallelism. All of these issues require focused research and development.

Reducing power requirements is one of the foremost objectives of any exascale endeavor. The report points out that an exascale supercomputer built with current technology would consume almost a gigawatt of power, approximately half the output of Hoover Dam. With a standard technology progression over the next decade, experts estimate that an exascale supercomputer could be constructed with power requirements in the 200 megawatt range at an estimated cost of $200-$300 million per year. Whether funding bodies will be willing to spend this much money remains to be seen, but the DOE would like to see that power requirement cut by a factor of 10, down to 20 megawatt neighborhood where current best-in-class systems reside.

As a point of comparison, the largest US supercomputer, Titan, installed at Oak Ridge National Laboratory, requires 8.2 MW to reach 17.59 petaflops. The world’s fastest system, China’s 33.86 petaflop Tianhe-2, has a peak power load of 17.8 MW, but that figure goes up to 24 MW when cooling is added.

The DOE report recommends five main areas of focus which add up to a comprehensive exascale roadmap with the goal of fielding such a system by the beginning of the next decade (circa 2022).

  • Provide computational capabilities that are 50 to 100 times greater than today’s systems at DOE’s Leadership Computing Facilities.
  • Have power requirements that are a factor of 10 below the 2010 industry projections for such systems which assumed incremental efficiency improvements.
  • Execute simulations and data analysis applications that require advanced computing capabilities such as performing accurate full reactor core calculations, validating and improving combustion models for mixed combustion regimes with strong turbulence-chemistry interactions, designing enzymes for conversion of biomass, and incorporating more realistic decisions based on available energy sources into the energy grid.
  • Provide the capacity and capability needed to analyze ever-growing data streams.
  • Advance the state-of-art hardware and software information security capabilities.

The plan described in the report covers the research, development and engineering that is needed to achieve an exascale computing system by 2022, but the acquisition of such a system would be separate from this effort. The suggested approach is to continue fielding systems at intermediate stages of performance, for example 100 petaflops, 250 petaflops, 500 petaflops, and so on, up to exascale. Currently, the US invests between $180M to $200M annually to acquire and operate HPC machines through the NNSA Advanced Simulation and Computing (ASC) and Office of Science Advanced Scientific Computing Research (ASCR) programs.

The R&D required to prepare the way for an exascale supercomputer comes with a price tag of between one billion and 1.4 billion dollars, a figure arrived at by surveying key stakeholders in the computing industry. This is the cost to the DOE with an expectation that there will be some “cost-share contribution” from vendors and some software componentry development left to the software ecosystem to resolve. Responsibility for the program will be jointly shared by the DOE’s Office of Science and the National Nuclear Security Administration (NNSA).

Related Items

Consolidating HPC’s Gains

Some Like IT Cold: Intelligence Agencies Pursue Low-Power Exascale

Senator Says US Congress Doesn’t ‘Get’ Supercomputers

Green500 Founder on Getting to Exascale: ‘Something’s Gotta Change’

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire