Rising to the STEM Challenge

By Tiffany Trader

September 19, 2013

Around the world, community, industry and academic leaders bemoan the “skills gap,” the divide between the profile of those seeking employment and the actual requirements of the marketplace. A number of studies have reported that during the next decade, there will be millions of available jobs in so-called STEM fields (science, technology, engineering and mathematics) and not enough qualified candidates to fill those positions.

The National Academy of Sciences, National Academy of Engineering, and the Institute of Medicine describe STEM as “high-quality, knowledge-intensive jobs…that lead to discovery and new technology,” benefiting the US economy and standard of living. The US may be short by as many as three million of these highly-skilled workers by 2018, putting national competitiveness at risk.

The National Math + Science Initiative refers to this shortage as a STEM crisis, which they say creates a chilling effect in research and the economy.

Some data points:

  • The demand for STEM skills has risen dramatically. STEM-based jobs grew at over three times the pace of non-STEM jobs between 2000 and 2010 and are expected to grow almost twice as fast by 2018.
  • As of February 2012, more than half of the 30 fastest growing occupations require training over and above a high-school diploma. But American students aren’t keeping pace with their foreign counterparts. American universities only award about a third of the bachelor’s degrees in science and engineering as Asian universities.
  • 25 years ago, the US led the world in high school and college graduation rates. Today, the US has dropped to 20th and 16th, respectively. The decline in education relative to other countries has a troubling effect on R&D. By 2009, for the first time, over half of US patents were awarded to non-US companies.

President Obama’s administration maintains that STEM education is vital to keeping the nation competitive. The President has supported efforts to train young people for technologically-driven careers, but government funding is struggling and many states are facing budget cuts. As a result, there is a greater emphasis on collaborative endeavors, public-private partnerships where vendors share some of the cost and then benefit from the research through technology-transfer programs.

The business sector has also aligned with communities and schools to encourage interest in science-based careers. Intel and Lockheed Martin, for example, have helped inspire young talent by sponsoring tournaments, science fairs and other innovation challenges. The Intel Foundation hosts some of the world’s largest pre-college science fair competitions and also runs the Educators Academy, an online community for K-12 educators. Lockheed Martin is also doing its part to advance STEM education, by sponsoring outreach activities for students from elementary school through college.

The Gender Factor

The gender disparity in the science and math-driven disciplines continues, but hidden in this problem is a source of immense potential. While women make up 51 percent of the overall workforce, they comprise only 26 percent of STEM workers. Solving for this disparity would go a long way to minimizing the skills gap, and helping the United States meet its projected skilled employment needs.

The computer science field highlights the slow pace of change. While the past decades’ attention to female equality has paid off as higher participation in most STEM fields, the number of women in the computational sciences has actually fallen. Recent Census Bureau findings show the number of female computer workers, employed in such roles as developers, programmers, and security analysts, has been on a 20-plus-year decline. In 1990, a full third of computer workers were women, but now that number has dropped to 27 percent.

An article at the Alantic about the “Brogrammer Effect” delves further into the data, noting the women in computer science are more likely to be Web developers (40 percent) than software developers (22 percent). The author makes the connection that less women are entering the field because they’re not pursuing computer science degrees: women’s participation in computer science education peaked in the 1980s. So why the lack of interest?

There are certainly cultural implications. Where male nerdism is accepted, embraced even, geeky women don’t have quite the same cachet. And while it’s easy to think of geek-chic role models like Steve Jobs or Mark Zuckerberg, their female equivalents don’t spring as readily to mind.

According to a recent US Census survey, computer workers make up about a half of STEM employment, and STEM pays well. Students who pursue a degree in a field pertaining to computers, mathematics, statistics or engineering are the most likely to secure full-time, year-round employment and the least likely to be unemployed. Earnings paralleled employment rates, with engineering majors averaging earnings of $92,000 per year and those coming from arts and humanities fields making about $55,000 annually.

Even the social studies, the arts and humanities, which tend to be more female-dominated, are becoming more technology-driven and are tapping the benefits of computer science. New research fields are springing up with names like “petascale humanities.” In fact, a new acronym has arisen that reflects the importance of the arts in the national curricula and the new economy. Proponents of “STEAM” (the “A” is for Arts) point out that creativity is an essential component of innovation.

Women continue to earn less than their male counterparts across every field of degree. Still women in high-tech jobs earn about 25 percent more than those in non-science fields. Advocates should not be afraid to play the money card, observes the executive director of the nonprofit group Science Club for Girls, Connie Chow, in this New York Times piece on the dearth of women scientists. That earning-potential can have a strong motivating effect, especially for students in low-income communities.

Preparation and Inspiration

Community and education leaders maintain that increasing student engagement in STEM subjects and addressing the shortage of qualified STEM teachers are necessary to ensure the future success of the US. For all students, and for women and minorities especially, early exposure to STEM subjects is critically important, as is being surrounded by a community of STEM professionals.

Central to this strategy is recruiting qualified teachers and giving them the means to develop into effective instructors. Studies confirm the common sense idea that there is a strong link between teacher performance and student success. The President’s Council of Advisors on Science and Technology (PCAST) estimates that the US will need more than 100,000 STEM teachers over the next decade.

The authors of the report advise: “To meet our needs for a STEM-capable citizenry, a STEM-proficient workforce, and future STEM experts, the nation must focus on two complementary goals: We must prepare all students, including girls and minorities who are underrepresented in these fields, to be proficient in STEM subjects. And we must inspire all students to learn STEM and, in the process, motivate many of them to pursue STEM careers.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire