A Path to Many-Task Computing on the Xeon Phi

By Tiffany Trader

October 24, 2013

It’s been nearly a year since the Intel Xeon Phi Coprocessor debuted at SC12, and in that time, it has experienced strong acceptance from the community. But as this is a relatively new technology, research into its usefulness is still forthcoming.

Adding to the growing body of research on the Phi is “Understanding the Costs of Many-Task Computing Workloads on Intel Xeon Phi Coprocessors,” written by a team of Illinois-based computer scientists and presented at the 2nd Greater Chicago Area System Research Workshop (GCASR) in May 2013.

The paper focuses on the opportunities for Many-Task Computing (MTC) to leverage the Intel Xeon Phi architecture. The programming paradigm that is Many-Task Computing (MTC) serves as a bridge between high-performance computing (HPC) and high-throughput computing (HTC). As the name implies, Many-Task Computing reflects the practice of running many computational tasks (dependent or independent) over a brief period of time. In MTC, metrics are most often measured in seconds (i.e., FLOPS, tasks/s, MB/s I/O rates), as opposed to operations (i.e., jobs) per month.

The impetus for the endeavor was explained thusly by the research team: “MTC has been well supported on Clouds, Grids, and Supercomputers on traditional computing architectures, but the abundance of hybrid large-scale systems using accelerators has motivated us to explore the support of MTC on the new Intel Xeon Phi accelerators.”

The crux of the researchers’ proposal is the creation of a new framework that “provides fine granularity for executing MTC applications across large scale compute clusters.” Integrating this capability into their existing graphics card framework, GeMTC, would “provide transparent access to GPUs, Xeon Phis, and future generations of accelerators to help bridge the gap into Exascale computing.”

The Intel Xeon Phi chip, aimed at highly parallel number-crunching, is the first product of Intel’s Many Integrated Core (MIC) architecture. In simple terms, the Phi coprocessor is an x86 based processor glued onto a PCIe 8x expansion card. The chip sports 60 cores, 4x hyper-threaded, for a total of 240 hardware threads, and stuffs just over 1 teraflop of double-precision performance in a single accelerator.

The first petascale adoption of Intel Xeon Phi coprocessors is Texas Advanced Computing Center’s Stampede system, which leverages 6,880 of these chips to arrive at 7.4 additional petaflops of peak computational performance. One of the most powerful supercomputers in the world, Stampede tops out at a total peak performance of 9.6 petaflops.

The paper seeks to provide a deep understanding of MTC on the Intel Xeon Phi architecture. The researchers test the performance of several different workloads using pre-production Intel Xeon Phi hardware and the Intel-provided SCIF protocol for communicating across the PCI-Express bus. With this setup, they achieve over 90 percent efficiency, a result that is close to or better than using OpenMP for offloading tasks over 300 uS.

Fig. 1: Efficiency of offloading 128 tasks to Xeon Phi. Comparison between OpenMP and SCIF with individual offloads and batch offloads.
Fig. 1: Efficiency of offloading 128 tasks to Xeon Phi.
Comparison between OpenMP and SCIF with individual
offloads and batch offloads.

They write: “This performance opens the opportunity for the development of a framework for executing heterogeneous tasks on the Xeon Phi alongside other potential accelerators including graphics cards for MTC applications.”

The Intel Xeon Phi coprocessor is similar to other hardware accelerators such as general-purpose GPUs (GPGPUs) but there are important distinctions. Graphics cards, specifically GPGPUs, have become a popular means of providing parallelism for HPC applications. But extracting performance gains from GPUs means a retooling of the code, which can be time-consuming and requires considerable expertise. The claim from Intel is that the Phi provides a more familiar environment, which makes it easier to program.

The experiment employed a pre-production Xeon Phi – a 61-core version featuring 8GB of GDDR5 connected to the host via a PCI Express bus. One of these cores is reserved for the Linux OS. The authors note that with this platform, “it is possible to use OpenMP, POSIX threads, OpenCL, Intel Math Kernel Library, MPI, or other popular libraries to develop and offload applications to the accelerator.”

When the researchers compared the efficiency of offloading 128 tasks to Xeon Phi between OpenMP and SCIF with individual offloads and batch offloads, they found that jobs over 320 uS benefit from the SCIF framework when sent in this length of a batch with performance that was slightly above OpenMP.

The experiment shows it’s possible to achieve minimum overhead with the Xeon Phi by directly communicating between the host and accelerator via SCIF across the PCI Express bus. The preliminary results suggest that under the authors’ proposed framework, “the resources of a Xeon Phi could be shared across multiple processes and users in a large scale computing environment while maintaining high performance through the use of specialized microkernels.”

Just like GeMTC, the new framework would include three types off operations: Push/Poll for sending and receiving jobs, Malloc/Free for preparing device memory, and a memory copy operation to copy data to or from the accelerator. A tie-in to Swift/T could be used for multi-node configurations.

In the future, the research team will turn their attention to using the Phi for other science codes, including Molecular Dynamics applications, Protein Simulators and more.

Authors on this paper include Jeffrey Johnson, Scott J. Krieder, Benjamin Grimmer – all from the Illinois Institute of Technology – and Justin M. Wozniak (from Argonne National Laboratory), Michael Wilde (Argonne and the University of Chicago) and Ioan Raicu (Illinois Institute of Technology and the University of Chicago).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire