Back to the Future of Serial Speed?

By Bill Sembrat

October 30, 2013

For the last few decades we have had great increases in performance. Since going to “off-the-shelf components” and riding on the tails of increasing processor improvements along with ever greater number of chips and cores some have come to realize that this can’t go on forever.

We have filled up a number of ever-bigger rooms with racks and racks until we have come face to face with having to own your own power company just for the power needed to run these complexes. On another front I would have expected more concerns about the high cost of these high-end systems.

It also seems that others are raising doubts because recently there has been a lot questions, concerns, discussions, comments, articles about the problems, and enough concerns about the way forward to even provide extra funding, but few seem to looking at root issues and saying that moving forward things need to change.

We have been lucky to ride the train so far, much longer and further than those of us would have ever imaged. But, now it has become ever harder and more costly to keep the train going. So lets take a deeper look at the road traveled. About 20 years ago the HPC train switched paths from custom processors and custom systems to off-the-shelf processors and systems. It has been a good and fruitful ride.

I think it would be very wise to notice that recently most of the speed improvement has come from the parallel side. I (we) was always highly focused on the serial side. At this point maybe I should say something about myself. I was fortunate to have worked with Seymour Cray for many years. So, the we, I am referring to, is my involvement and experience with Seymour and Seymour’s machines. Seymour was never in any race and not really concerned about what someone else may be doing or not doing, but always interested in exploring and pushing serial speed on real workloads. We were mainly focused on serial speed because it kept things simple and made systems easier to use, easier to program, with less overhead and higher system efficiencies.

Few may have ever talked to Seymour about serial speed vs. parallel speed, but I can tell you that Seymour was always quite aware and disciplined himself to stay focused on serial speed improvements. He felt he could contribute more, add more value, was personally more challenging, and he very much like to work on, enjoyed working on serial improvements.

Although, he would never admit it, he also knew that he was the “king” of serial speed. Just a side comment, Seymour was also interested in exploring the far end of parallel processors and we had a running prototype parallel machine that had a design goal of 30,000,000 processors, but that is quite another story. Getting back to this topic we were really always highly focused on serial speed with the “Cray’s.” Over the last 20 odd years the current off-the-shelf path has relied on serial speed improvements but ever more increasingly on greater and greater parallel speed improvements. Parallel speed improvements has, naturally, associated with it higher overhead and power costs along with lower system efficiencies and now ever higher costs to get into the top of the list.

So to get large cost effective improvements I think that we now need to re-focus back to serial speed improvements. I believe that by addressing serial speed improvements that speed improvements of 50X+ can be achieved because we were addressing root level changes that could lead to these kinds of improvements. This quickly leads one to a startling conclusion that memory can’t keep up, does not work and becomes the big elephant in the room. So you really need to look at how memory is used and really the only way to see it is to wipe the slate clean and get rid of memory. In order to think about it you need first get rid of it and start again fresh. Very few may be up to the task of starting fresh with a blank sheet. This is a rather hard task and not as simple as one may think.

While Seymour always preferred blank paper pads with faint light blue lines and number 2 pencils, at a time, it seemed, everyone started using computers and in some cases even “Cray” Super Computers to design the “next” machine. Einstein never needed or used a computer for his theories and I would guess that Peter Higgs didn’t use one either. Giant leaps and great things seem to come from very simple root ideas. Also can-do-positive attitudes play a most, maybe the most important part, even over seemingly impossible tasks.

The memory model currently used is largely based on a 70-year-old model. Oh, if you can wake up the guys that came up with the model, that were in the farm house/barn in Princeton at the time, they would be quite amazed at the great strides and progress but in very short order they would be able to program today’s machines – so in some ways things really haven’t changed much. Other areas will need to be addressed and changed, but memory is the first and most looming problem. Because these changes are deeper root issues they should be hidden from users and even and from most of the vast layers of existing software. Funny you may think that this is new but most was tried and used years ago, but never commercialized and sometimes discarded because of lack of the-then-current available technology.

Well, yes I do believe that by addressing some deep root issues that over time large serial speed improvements can be achieved, but to use them you will quickly come to the several conclusions including that you must deal with new ways to see and use memory and all that this implies. To achieve very large improvements, I think, the focus needs to be on very several very fundamental and root changes and then apply all the parallel knowledge and improvements made over the last 20 years. Now here, I believe, may be a bigger problem. In the US we have been blessed with chip and system vendors that have been able to supply ever-increasing speeds and lots of chips and cores so we have been glued to that path but others may be unencumbered, highly motivated and more able to do something new and different.

Although they may operate under different set of rules and have additional other problems they do not have as much invested in existing ideas, enterprises, hard plant and equipment; and may be less locked in and may be more willing to change pathways. So I am concerned with our current shortsighted attitude and lack of “Americanism” in keeping the leadership local.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire