Fair Pricing Key to Node Sharing in HPC

By Alex Breslow, University of California San Diego

November 13, 2013

In HPC systems, jobs almost never share compute nodes. Each user requests the number of physical machines that they need to run their job, and then they run it in isolation.

While this practice was clearly the best choice for distributed applications in the pre-multi core era, the same is not necessarily true for the compute nodes of today, which integrate tens to hundreds of cores. Instead, distributed application co-location, whereby multiple parallel codes share the cores on sets of compute nodes, is a pragmatic choice for those seeking to optimize machine performance and power efficiency.

A previous study we did demonstrated co-locating pairs of 1024 process MPI jobs across 2048 cores decreases the run time of most applications and thus improves system throughput and energy efficiency by 10 to 20%.

Figure 1: An example of running 2 two-node jobs in isolation versus co-located: Switching from isolation (left) to co-location (right), where each socket is divided between applications improves system performance and energy efficiency.
Figure 1: An example of running 2 two-node jobs in isolation versus co-located: Switching from isolation (left) to co-location (right), where each socket is divided between applications improves system performance and energy efficiency.

However, not all applications benefit from distributed co-location: a significant number do slow down due to contention from their co-runners. While this slowdown is almost universally offset by gains in the performance of the co-running applications, and therefore still results in improved throughput, it causes an unfair inequity in pricing.This unfairness arises from the typical HPC accounting policy, which charges users proportionally to application run time. An example of this pricing unfairness is shown in Figure 2.  The plot shows the price a user running the GTC code would expect to pay when their job is co-run with each of the applications on the x-axis.  Under the current pricing model, the user would pay 60% more when their job is co-run with MILC instead of with AMG.

Figure 2: The current pricing mechanism (SOP) penalizes the user for co-locating their job by charging them more when their job degrades more.
Figure 2: The current pricing mechanism (SOP) penalizes the user for co-locating their job by charging them more when their job degrades more.

In this current pricing scheme, the user not only suffers from a decrease in utility caused by the increased job run time, but also faces an additional associated surcharge.  Our work, published and to be presented at SC’13 as one of the best paper candidates, targets this problem and introduces contention-aware fair pricing, where a user pays progressively less and less as their job is degraded more and more.

However, implementing such a policy is a challenge, as it requires a non-intrusive mechanism that precisely quantifies individual application degradation caused by co-running applications.  While previous work has employed offline profiling techniques to determine this degradation, we argue that such techniques are not always practical in a production setting, where online application behavior can significantly deviate from offline characterizations [3-6].  Instead we need a dynamic, lightweight, runtime system or OS service to detect such contention.

To satisfy these objectives, we have developed a low-overhead daemon, the Persistent Online Precise Pricing Agent (POPPA).  POPPA uses a fine-grain precise pricing shutter, a novel mechanism capable of measuring contention between applications with less than 1% overhead and with a mean absolute prediction error of 4%.  The shutter mechanism works by alternating the execution environment of each application between one where contention from co-runners is present, and one where it is effectively absent.  POPPA achieves this by cyclically pausing all but one application in a round-robin fashion and measuring the spike in the performance of the lone running application versus when it was co-located.

Figure 3: POPPA alternates application execution between isolation and co-location.  P and S are tunable parameters.
Figure 3: POPPA alternates application execution between isolation and co-location. P and S are tunable parameters.

The above shows the mechanism in action.  During the first phase, the POPPA daemon is dormant and threads from both applications execute.  Next, the instructions per cycle (IPC) of each application is derived from measurements taken using the hardware’s performance monitoring unit.  Then Job B is put to sleep, and the IPC of the Job A is measured.  Then Job B is woken up, and the IPC of both applications is measured.  This process then repeats but with Jobs A and B switching roles.

The POPPA daemon is fully parameterizable to allow for machine- and application-specific tradeoffs. In particular, we can configure the length of the periods between shutter events, the length of the shutter time, as well as the length for pre- and post-shutter measurements. Since each shutter requires all applications but one to sleep, the sleeping applications cannot make progress and thus lose performance during the shutter, which results in run time overhead.  By controlling the ratio between shutter time and shutter interval, this overhead can be carefully tuned to an acceptable value.  For our work, we decided on a shutter interval of 200 ms and a shutter length of 3.2 ms, as these values offered high prediction accuracy while keeping the average overhead under 1%.

This mechanism allows POPPA to be highly accurate, with a mean absolute error of 4%. The low prediction error stems from the fact that the system does not rely on a single measurement for determining degradation estimates, but rather can base its analysis on hundreds to thousands of fine-grain measurements that are uniformly spaced throughout the execution of each co-running application.  As a result, POPPA detects phase-level behaviors in applications that allow it to construct more accurate prediction estimates.

Based on these predictions, we then implement a fair pricing strategy and discount the user relative to their predicted degradation due to co-runner interference.  Our philosophy is that when a user’s application is degraded by 20%, the simplest and most intuitive pricing policy is to discount that user by 20%.  This policy allows the user to easily reason about how they will be priced and to also reap the benefit of a discount, which directly compensates for the additional time taken to run their job.  This compensation encourages users to embrace co-location, as the discounts allow their resource allocation to go further.

The art of precise and fair pricing is a key for designing future, agile, software systems and opens the door to new ways to utilize the rising class of multi- and many-core nodes.  If this article has piqued your interest, we invite you to our talk at the SC’13 conference (Title: “Enabling Fair Pricing on HPC Systems with Node Sharing”, to be presented on November 20th at 10:30AM in rooms 401/402/403). The contact author for this work is Alex Breslow, PhD student at the University of California San Diego.  Ananta Tiwari and Laura Carrington are research scientists at San Diego Supercomputer Center, Martin Schulz is a computer scientist at Lawrence Livermore National Laboratory, and  Lingjia Tang and Jason Mars are assistant professors in the University of Michigan EECS Department.

See Also:

 Cache pirating: Measuring the Curse of the Shared Cache. In Parallel Processing (ICPP)

Quantifying Effects of Shared On-chip Resource Interference for Consolidated Virtual Machines

Bubble-up: Increasing Utilization in Modern Warehouse Scale Computers via Sensible Co-locations

Managing Performance Interference Effects for QoS-Aware Clouds

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire