Mont Blanc Forges Cluster from Smartphone Chips

By Timothy Prickett Morgan

November 22, 2013

The Mont Blanc project, an effort by a number of European supercomputing centers and vendors that seeks to create an energy-efficient supercomputer based on ARM processors and GPU coprocessors, has put together its third prototype. That is one more step on the path to an exascale system.

The third generation machine, which is being shown off at the SC13 conference in Denver this week, is by far the most elegant one that the Mont Blanc project has created thus far. This prototype supercomputer actually bears the name of the project this time around, and was preceded by the Tibidabo and Petraforca clusters, which were based on a different collection of ARM processors and GPU accelerators.

Just because this design is elegant, don’t get the wrong idea, though. The Mont Blanc machine is still a prototype, cautions Alex Ramirez, leader of the Heterogeneous Architectures Research Group at BSC who heads up the Mont Blanc project.

“In order to make this a production product, we would have to go through at least one more generation,” he says.

It stands to reason that the Mont Blanc project is waiting for the day when 64-bit ARM chips with integrated interconnects and faster GPUs are available before going into production. But for now, software can be ported to these prototypes and things can be learned about where the performance bottlenecks are and what reliability issues there might be.

The exact size of the Mont Blanc prototype cluster has not been determined yet, but Ramirez says it will have two or three racks of ARM-powered nodes. “It will be big enough to make scalability and reliability claims, but we are trying to keep the cost down on a machine that is not a production system,” he says.

Mont-Blanc-blade-carrier

The server node in the Mont Blanc system is based on the Exynos 5 system-on-chip made by Samsung, which is a dual-core ARM Cortex-A15 with an ARM Mali-T604 GPU on the die. The ARM CPU portion of the system-on-chip has about twice the performance of the quad-core Cortex-A9 processor used on the Petraforca prototype that was put together earlier this year. (There were actually two versions, but the second one is more important.) That machine used Nvidia Tesla K20 GPU coprocessors to test out how a wimpy CPU and a brawny GPU might be married. Specifically, the ARM processors, which were Tegra 3 chips running at 1.3 GHz, were put into a Mini-ITX system board with one I/O slot that was linked to a PCI-Express switch that in turn had one GPU and one ConnectX-3 40 Gb/sec InfiniBand adapter card.

The dual-core Exynos 5 chip from Samsung is used in smartphones, runs at 1.7 GHz, and has a quad-core Mali-T604 GPU that supports OpenCL 1.1. It has a dual-channel DDR3 memory controller and a USB 3.0 to 1 Gb/sec Ethernet bridge. Each Mont Blanc node is a daughter card made by Samsung that has the CPU and GPU, 4 GB of memory (1.6 GHz DDR3), a microSD slot for flash storage, and a 1 Gb/sec Ethernet network interface. All of this is crammed onto a daughter card that is 3.3 by 3.2 inches that has 6.8 gigaflops of compute on the CPU and 25.5 gigaflops of compute on the GPU for something around 10 watts of power. That works out to around 3.2 gigaflops per watt at peak theoretical performance.

The Mont Blanc system is using the Bull B505 blade server carrier and the related blade server chassis and racks to house multiple ARM server nodes. In this case, the blade carrier is fitted with a custom backplane that has a Broadcom Ethernet crossbar switch on it that links fifteen of these ARM compute nodes together. Every blade in the carrier has an Ethernet bridge chip, made by ASIX Electronics, that converts the USB port into Ethernet and then lets it hook into that Broadcom switch in the carrier.

Here is how you stack up the Mont Blanc rack:

Mont-Blanc-system

In this particular setup, says Ramirez, the location had some power density and heat density restrictions, so it was limited to four Bull blade server chassis. But the system is designed to support up to six chassis if the datacenter has enough power and cooling.

Each blade has fifteen nodes, and is a cluster in its own right. The blade delivers on the order of 485 gigaflops of compute and will burn about 200 watts. (Ramirez is estimating because he has not actually been able to do the wall power test yet because the machines just came out of the factory a few days prior to SC13.) That works out to 2.4 gigaflops per watt or so after the overhead of the network is added in.

The 7U blade chassis can hold nine carrier blades, for a total of 135 compute nodes. That works out to 4.3 teraflops in the aggregate per chassis at around 2 kilowatts of power, or 2.2 gigaflops per watt. With two 36 port 10 Gb/sec Ethernet switches to link the chassis together and 40 Gb/sec uplinks to hook into other racks, a four-chassis rack would deliver 17.2 teraflops of computing in an 8.2 kilowatt power envelope, or about 2.1 gigaflops per watt. With six blade chassis, you can get 25.8 teraflops into a rack. That is 810 chips in total per rack, by the way, with a total of 1,620 ARM cores and 3,240 Mali GPU cores.

This Mont Blanc effort will get very interesting next year, when many different ARMv8 processors, sporting 64-bit memory addressing and integrated interconnects, become available from a variety of vendors, including AppliedMicro, Calxeda, AMD, and maybe others like Samsung. Many of the components that had to be woven together in this third prototype will be unnecessary, and the thermal efficiency of the cluster will presumably rise dramatically once these features are integrated on the chips. These future ARM chips will also come with server features, such as ECC memory protection and standard I/O interfaces like PCI-Express.

“There will be enough providers that at least one of them will have exactly the kind of part you want at any given time,” says Ramirez, a bit like a kid in a candy store.

The Mont Blanc project was established in October 2011 and is a five-year effort that is coordinated by the Barcelona Supercomputer Center in Spain. British chip maker ARM Holdings, French server maker Bull, French chip maker STMicroelectronics, and British compiler tool maker Allinea are vendor participants in the Mont Blanc consortium. The University of Bristol in England, the University of Stuttgart in Germany, and the CINECA consortium of universities in Italy are academic members of the group, and the CEA, BADW-LRZ, Juelich, and BSC supercomputer centers are also members. So are a number of other institutions that promote HPC in Europe, including Inria, GENCI, and CNRS.

Mont Blanc was originally a three year project with a relatively modest budget of €14.5 million, and it has secured an additional €8.1 million in funding from the European Commission to extend it two more years. The funds are not just being used to create an exascale design, but also to create a parallel programming environment that will run on hybrid ARM-GPU machines as well as creating check pointing software to run on the clusters.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire