HPC Progress Starting from 10X

By Bill Sembrat

December 4, 2013

I was fortunate to have worked very closely with Seymour Cray for many years in many different roles and capacities. I started working with Seymour and Seymour’s machines at Control Data Corp. I was the Account Manager at Lawrence Livermore National Lab when Sid Fernbach was the “leader” and then the Account Manager at DOE. Although I took it for granted at the time, I was in “graduate school” between the world’s leading designer and the world’s leading user. I sometimes think about that very special set of circumstances and didn’t realize how very special it was taking it all for granted and thinking that it was the way all high tech companies and users worked. Before Seymour died I also worked with him at Cray Computer Corp and then at SRC Computers. I left SRC Computers after Seymour died.

Now, reflecting on the past and looking towards the future let’s think about performance increases and how to get some significant performance increases. A reasonable starting goal is to look for performance increase of 10X with a pathway to get, at least, another 10X.

Consider the problems and issues. It’s hard to add more racks and because of power, heat and other considerations, we have to look at other areas. It would be nice if we can just go to the most fundamental part and get transistors to switch 10X faster. Faster electron transmission would be nice too. It would be easy if we could reach in and turn the dials up ignoring, for the moment, heat dissipation and transmission delays. This is why there is tremendous effort being spent on speeding up transistors. Well, let’s consider changing to gallium arsenide transistors. Seymour changed from silicon to gallium arsenide for speed and some other characteristics including reduced power requirements and a few others, but even then with gallium arsenide we will still face limits. A lot of labs around the world are working on faster transistors including a silicon-germanium composite, so there is some hope for faster devices. As I understand, these improvements are around 2X-4X or so, but even 2X would be great. Well, we are reaching limits (and can’t just get around some physical limitations) so this approach is not going to get us very far down the road, and herein lies the most significant issue.

In search of speed in the late 1950’s Seymour changed from germanium transistors to new transistors from a new start up company in California, Fairchild Semiconductor, “Planar Silicon Transistors”. Of course, that was before the label of “Silicon Valley” existed. Seymour may have been the first, if not one of the first to use silicon transistors for HPC, also well before the label of “HPC”. This was for the Control Data Corp 6600. The 6600 was a revolutionary machine that also greatly expanded the existing computer model addressing real code and real workload issues. If you take a “Big Picture” look at the 6600 you would see that it exploited the “RAM” model foretelling the future. We have all been on a pathway set by a model, which was already, somewhat, fully exploited with the 6600. The model hasn’t really changed and really all we have been doing over the last several decades is riding the coattails of technology improvements, tweaking the model, improving it here and there, and adding parallelism. In search of faster serial speed for the Cray 3 and Cray 4 Seymour was again to change, this time, from silicon to gallium arsenide transistors.

We cannot expect technology to get us large improvements, therefore, we have to address fundamental model changes on how we process codes and work loads. The guys in the farmhouse in Princeton thought they were in “fat city” when they came up with the idea of using CRTs as random access memory (RAM). As I remember each CRT was 40 words by 40 bits. They had a few CRTs, which was, at the time, all of the random access memory that existed on the planet. They were losing bits until they discovered that sunlight coming in the windows hit the CRTs resulting in dropping bits. They had to cover up all the windows. I would like to know what they were thinking and considering as options besides RAM and CRTs, but did not use and why. They were free thinkers and unencumbered by RAM or even users at the time. Over the last 50 years many root models changes were considered so it is important to understand the history, circumstances and compromises made at the time.

Even if you can come up with a plan to get to a 10X improvement (and if we just assume that we can) you arrive with a lot of problems to be overcome. Here we run in into that issue that seems to always come up with any speed improvement, memory, but you also come face-to-face with just moving stuff around and the limitations of even using wire. And one always needs to keep in mind power and transmission issues. We find several technology brick walls coming at us at one time. So, this technology driven path does not seem to be easy, quick or may not be cost effective. That said we would still welcome (and use!) any technology improvements.

Since improvements in technology will only get us so far, I am suggesting, just as Seymour was driven, to look at root level model changes; this may be the only way to see large improvements of 10X, and a path to another 10X or more. Seymour was always pushing speed and many may be surprised to know that follow on machines to the Cray 4 were quite different but also technology driven as usual. They follow further attempts to include additional parallelism in an electrical structure without abandoning the serial structure of computer programs and adding in features that became possible because of advances in technology. Seymour was a “free thinker” always considering and thinking about root model changes that would become necessary. Root level model changes are more easily considered and understood if you consider both the details and big picture coupled with broad based historical knowledge.

If we can start with a blank sheet, it is always good to keep in mind that there is a great need to reduce power and the easy way is to just make everything simpler and eliminate or reduce parts. It’s time to also go back to the very source and reconsider just how users are using machines and what they are trying to accomplish. In other words go back to look not only how real codes load the machine, but how and what they are trying to accomplish. Then we need to go back address different new and faster models. I really don’t think we in the computer business have been good vendors to our users. We have been forcing users to become computer experts just to use our machines. Users are just using a “tool” to get there work done and really don’t care about all this “technology” that we force them to understand in order to use computers. And the complexities are only increasing, with various types of parallelism, cache levels, threads, threadblocks, etc. Seymour always looked at applying his “gift” to give other people a better, faster, simpler, easier to use “tool” to better understand the world around us.

Seymour would sometimes get tired of my continued questions about what else he was thinking about and why he didn’t use it or go in a different direction. Given the right circumstances, Seymour was disarmingly straightforward. At the right time Seymour even welcomed a discussion because, I think, it gave him a way to talk about what he was thinking; it was part of his discovery process when he came to difficult questions or a roadblock. I found I learned much more from what was thrown out and the process to the answer, especially when most answers seemed quite simple – it’s the “Why didn’t I think of that?” moment. The real question becomes not the answer, but rather, if it’s so simple, why didn’t I think of that? You may quickly find that it was really not that simple or you were not asking the right question. Understanding the answer, going to the root and also understanding the history is always much better and far richer if you can and are able to understand all the “whys.” Sometimes, we are all too ready to just look for the “answer.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire