HPC Progress: No More Free Lunch

By Tiffany Trader

December 11, 2013

As HPC news hits its end-of-year slump before the raft of new activity begins anew in January, what better time to take in some SC13 highlights that you may have missed. During the show, NVIDIA Corp. hosted a number of compelling booth sessions at its GPU Technology Theatre, and full videos of these talks are now available on NVIDIA’s website.

The sessions covered a wide range of topics, including the future of accelerated computing, massively parallel computing for physics, being green at exascale, the latest additions to OpenACC and CUDA – and much much more. With 39 talks to choose from, there should be something for everyone.

One session that stands out is titled “Efficiency and Programmability: Enablers for Exascale.” Delivered by NVIDIA Chief Scientist and Senior VP of Research Bill Dally, the 28-minute talk provides a concise and clear overview of the main challenges that HPC is facing over the next five to 10 years and NVIDIA’s plans to address them.

There are two essential demands, says Dally, which are aligned in their capabilities. On one side, let’s call it HPC, climate scientists are working to refine their grid models down from tens of kilometers today to kilometer scale models in order to answer fundamental questions about greenhouse gases and climate change. On the other side, data analytics professionals need to be able to digest enormous amounts of data in order to gain insight from it. For both of these fields, HPC and data analytics, there is an insatiable demand for computing. And they need the same three things: number crunching, data movement/communication and memory/storage. The main difference between HPC and data-analytics comes down to how these elements are balanced.

SC13 NVIDIA Session slide - end of historic scaling 800x

The days of waiting for Moore’s Law to take care of your problems is over, notes Dally, as he displays a chart detailing the end of historic scaling. During the 80s and 90s, single thread performance was increasing at 50 percent per year. Those days are over. From the late 80s to about 2000, HPC was exploiting parallelism but doing it in a covert way. At the beginning of that period, machines took 10 cycles to do one instruction. At the end of that period, they executed four instructions per cycle. In the same time frame, the clock cycle went from 100 gate delays to 10 gate delays. But all that performance got mined out; experts could not make the clock cycles any shorter, and there were diminishing returns to issuing more than four instructions per cycle.

At the same time, semiconductor processes reached a limit with regard to scaling voltage without facing leakage and overheating. This put the kibosh on Dennard scaling.

Here Dally references DARPA’s Bob Colwell, who earlier this year observed, “Moore’s law gives us more transistors…Dennard scaling makes them useful.”

“The number of transistors is still going up in a very healthy way,” Dally contends, “We’re still getting the Moore’s law increase in the number of devices, but without Dennard scaling to make them useful, all the things we care about – like clock frequency of our parts, single thread performance and even the number of cores we can put in our parts – is flattening out, leading to the end of scaling as we know it. We’re no longer getting this free lunch of technology giving us faster computers.”

This is a problem that needs to be solved because our 21st century economy hinges on continued computational progress. With the end of Dennard scaling, all computing power becomes limited, and performance going forward is determined by energy efficiency. As process technology can no longer be counted upon for exponential advances, the focus must shift to architecture and circuits, according to Dally.

Using Titan as the current benchmark, Dally maintains that fielding an exascale machine (by 2020) will require:

  • 50X improvement in performance
  • 4X scaling in the number of nodes
  • 2X scaling in energy
  • 25X improvement in energy efficiency
  • 1000X thread increase (parallelism)

The most difficult challenges, according to Dally, are the last two: energy efficiency and parallelism. The rest of the talk goes into detail about what it will take to hit these goals and NVIDIA’s vision for what a machine will look like in 2020.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire