Tackling the Power and Energy Wall for Future HPC Systems

By Performance and Architecture Lab (PAL) at PNNL

December 17, 2013

A Perspective from the Paci fic Northwest National Laboratory*

As the cost of powering a supercomputer or a datacenter increases, next generation exascale systems need to be considerably more power- and energy-efficient than current supercomputers to be of practical use. Constrained power consumption (20-25MW for the entire system is the target that the DOE Office of Science gave to the HPC community) is one of the limiting factors on the road to achieve sustainable performance at exascale. In fact, the power challenge is so fundamental that other challenges can be reduced to power limitations. For example, operating at near-threshold voltage (NTV) in order to perform computation within a given power budget may considerably increase the soft-error rate (resilience challenge). Unlike petascale systems, where the primary concern was performance, exascale systems need to climb the power and energy walls in order to deliver sustainable exaflops performance. At the Pacifi c Northwest Laboratory (PNNL) we are exploring holistically energy and power efficiency aspects at all levels of granularity, from processor architecture to system integration. We are also tackling the power and energy problems from several angles, from system software and programming models to performance and power modeling of scientifi c applications and extreme scale systems.

PNNL Research Areas Fig1

PNNL’s computing facilities, such as its Institutional HPC system (PIC), and an earlier testbed, the Energy Smart Data Center (ESDC), provide research platforms to address what-if questions related to the use of suitable datacenter metrics that are meaningful to the HPC community. The measurement harness of the ESDC entailed over thousand out-of-band sensors comprising power, flow, pressure and temperature at the machine room and at the IT equipment. PIC is another example that substantiates our integrated datacenter vision to drive energy efficiency research. This system is housed in a geothermally cooled datacenter with rear-door heat exchangers. The facility is instrumented at the machine room and system level, providing insight into macro-level machine room power efficiencies and micro-level energy efficiencies at the server and mother-board component levels.

Despite its importance for future exascale systems, power is still not considered a first-class citizen, which complicates the development of power-aware software algorithms. In PNNL’s vision, power should be considered a resource, just as processing elements or memory modules, and should be managed as such by the system software. System software must be able to precisely measure (in-band) power resource utilization, i.e., how much power is consumed by each system component at any given time. More importantly, the system software should adapt the application to the contingent execution environment, e.g, by allocating sustained power to threads on the application’s critical path or promptly moving idle cores to low-power states. The design and development of such self-aware/self-adaptive system software is an active research area at PNNL. We recently analyzed the power characteristics of scientifi c applications from the DOE ASCR’s Exascale Co-Design Center and, in general, in the HPC community to identify opportunities for power savings. Given the lack of in-band, fine-grained (both in space and time) power sensors, we develop an accurate per-core proxy power sensor model that estimates the active power of each core by inspecting the cores’ activity. We use statistical regression techniques to formulate closed-form expressions for the estimated core and system power consumption. These techniques enable us to develop power-aware algorithms and characterize applications running even on non-instrumented compute nodes. Our experiments show that processes in the same application may not have the same power profi le and/or may alternate high-power with low-power phases independently from one another. These alternating behaviors raise opportunities for shifting power towards computing-demanding processes, hereby saving power without diminishing performance.

There is a strong agreement among researchers on the increasing cost of data movement with respect to computation. This ratio will further increase in future systems that will approach NTV operation levels: the energy consumption of a double precision register-to-register floating point operation is expected to decrease by 10x by 2018. The energy cost of moving data from memory to processor is not expected to follow the same trend, hence the relative energy cost of data movement with respect to performing a register-to-register operation will increase (energy wall — analogous to the memory wall). In a recent study we modeled the energy cost of moving data across the memory hierarchy of current systems and analyzed the energy cost of data movement for scientifi c applications. In this study, we answer several important questions such as what is the amount of energy spent in data movement with respect to the total energy consumption of an application or what is the dominant component of data movement energy for current and future parallel applications. Our results show that the energy cost of data movement impact di fferently on each application, ranging from 18% to 40%. This percentage might increase in the future, as the energy cost of performing computation decreases. To avoid such scenario, new technologies, such as Processing-In- Memory, Non-Volatile RAM and 3D-stacked memory, become essential for the development of sustainable exascale computing. We also noticed that the energy spent in resolving data dependency, speculation and out-of-order scheduling of instructions accounts for a considerable part of the total dynamic energy, between 22% and 35%. This cost can be reduced with simpler processor core designs that are more energy efficient.

Given the increasing complexity of future exascale applications and systems, designers need new sophisticated tools to navigate the design space. These tools must capture a range of metrics that are of interest to system and application designers, including performance and power consumption. PNNL has historically developed application-specific performance tools that model the evolution of parallel applications. While these models have shown themselves to be powerful tools for understanding the mapping of applications to complex system architectures, the metrics of interest are expanding to include power consumption as well. To this end, PNNL researchers have developed a methodology for the modeling of performance and power in concert that builds upon its experience of co-designing systems and applications. This modeling capability has been developed along three axes. The first is the deployment of a workload-specific quantitative power modeling capability. Such power models accurately capture workload phases, their impact on power consumption, and how they are impacted by system architecture and con figuration (e.g., processor clock speed). The second axis is the integration of the performance and power modeling methodologies. To this end, it is critical that both modeling methods operated at the same conceptual level. In other words, application phases or components that are captured in one model must be also reflected in the other so that trade-o ffs between power and performance may be captured and quantifi ed. The last axis of development involves integrating these models with our self-aware/self-adaptive software system that will provide mechanisms for dynamically optimizing ongoing application execution. We have developed the concept of Energy Templates, which are a mechanism for passing application-specifi c behavioral information to the underlying runtime layers. Energy Templates capture per-core idle/busy states, as well as the amount of time each core expects to remain in each state, allowing runtime software to determine appropriate opportunities to exercise power saving features provided by the hardware/software platform (e.g., Dynamic Voltage and Frequency Scaling — DVFS) without negatively impacting performance. By proactively using application-speci fic information, Energy Templates are able to exploit energy savings opportunities that are not available to mechanisms that are not application-aware.

The research at PNNL is also being applied within the new DARPA program in the Power Efficiency Revolution of Embedded Technologies (PERFECT). We see that technologies being developed both for high performance computing and embedded systems are fundamentally the same. These may well converge in the future, and thus common tools and techniques can be developed that encompass both. Within PERFECT PNNL researchers are developing a coherent framework that is able to both empirically analyze current systems and predictively assess future technologies.

Finally, PNNL’s research extends to the datacenters: this research direction is approached in an integrated fashion where IT power consumption for applications of interest to the DOE is correlated with the power consumption of the supporting infrastructure. An integrated approach allows the researcher to formulate what-if questions in an HPC setting such as the applicability and efficacy of novel cooling solutions (e.g., spray cooling) at the heat source vs. a traditional global cooling solution.

Overall, PNNL is actively participating in (and in many cases leading) several DOE and DARPA projects, as well as internal projects, that aim at understanding the impact of the power and energy walls on exascale systems and deploying power- and energy-aware solutions at all levels of the system and application design and optimization. The insights gained throughout these efforts and projects will contribute towards the design of power- and energy-efficient exascale systems.

*The following PNNL researchers contributed to this piece: Adolfy Hoisie, Kevin Barker, Roberto Gioiosa, Darren J. Kerbyson, Gokcen Kestor, Joseph Manzano, Andres Marquez, Shuaiwen Song, Nathan Tallent, Antonino Tumeo, Abhinav Vishnu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire