HPC’s Role in Defining Music’s Creation

By Antonis Karalis

December 23, 2013

“I remember I had this little computer with 16K of memory, and everyone was astonished! What was I going to do with all this memory!” Hans Zimmer around 1983.

Music and technology have been walking side by side for millenniums. Musical instruments have been following the advancements in technology. They evolved with mechanical and acoustics advancements, followed by advancements in electronics, and finally, they now transition into virtual reality, based on powerful code and efficient computational resources. History taught us that different musical instruments gave us different sound palettes and eventually different genres of music. Mastering new technologies has always helped us to develop new compositional styles, and enhance production approaches and sonics.

There are computer technologies that, as they go from one generation to the next, improve by an average factor of 2. With high performance computing and supercomputers, these improvements can actually be a factor of 10, or more. In a classic supercomputing style let’s look for things that will substantially change the way people perform their audio and music work and eventually how the audience enjoy their products.

Music and Technology – An Ancient Bond

Around the 5th century BC ancient Greeks created the Chorus, a homogeneous, non- individualized group of performers who communicated with the audience usually in song form. The Chorus originally consisted of fifty members. Tragedians, such as Sophocles and Euripides, changed this number through various experimentations. At the same time, on their quest to optimize the audience experience, the ancient architects built venues with custom designed acoustics. During the 18th Century, the chamber orchestra was found, also consisting of fifty musicians. Later, the full symphonic orchestra came along with about 100 musicians facilitated in custom-acoustic auditoriums that defined the sound of the experience. Music, orchestration and acoustics were always treated as one and there is a good reason for this.

The symphonic orchestra is truly a piece of technology: Every instrument is a different technological wonder and concert halls around the world are subjects of tremendous acoustic research. However, the most important element of an orchestra is the conductor. The conductor acts as the central piece of a very low message-passing latency and high-bandwidth fabric. The conductor is directing the musical performance in real time. This system architecture is the reason we have “Classical Music”. It became a reality based on organic nodes (human players), acoustic and physics laws and predetermined music written by the composer. The only limitations of this very advanced form of expression are that the music is already written by the composer and the acoustics are also more or less predetermined. To put that in perspective, in Jazz, the music can change in real time (improvisation) but the amount of people interacting in real time is greatly reduced.

The Time Machine

During the last 40 years, with the advancement of supercomputers and high-performance computing, we realized that we can scientifically create virtual environments, in which we can define specific questions and get answers. The better the questions are formed, the more defined the answers will be. This is what supercomputers have allowed us to do for many decades now and in many industries. They are like time machines. They allow us to understand the past and create the future.

But what is the ultimate answer to Music? Maybe we can discover this by moving backwards, and this is the main reason for this historic introduction to music technology. If we take one of the highest forms of human collaboration and expression, the symphonic orchestra and classical music, and we investigate those forms of expressions by a modern prism, we might get the answers we are looking for.

What are the ingredients of the modern hybrid recipe of orchestral music? Hollywood is the best place to look as scoring movies is the modern way of creating future classics.

Creating the HPC384 Spec.

I will use another Hans Zimmer quote here: “Music is organized chaos! ….but not necessarily in a bad way, as organized chaos can sound pretty good!” Composers might be inherently good in organizing chaos.

For the past 17 years, programmers from all around the world have built virtual instruments and effects based on software interfaces like VST, which runs seamlessly over an x86 microprocessor architecture. Among the high-performance computing systems, HPC clusters provide an efficient performance compute solution based on industry-standard hardware connected by a high-speed network.

Using HPC we can work with advanced physics to model plate reverbs, create evolving non-linear auditorium acoustics and emulate multi-microphone positions that will give sound endless possibilities. It is no longer necessary to work with oversampled peak detection in order to estimate the peak samples on a signal. We have overcome those barriers of conventional underpowered discrete-time systems. We process the actual audio and not ‘the estimation of it’ without any more fighting with conventional CPU or DSP constraints.  There is no way we can overload an HPC music production system when we work with 88.2 kHz, 96 kHz, 192 kHz or even 384 kHz. Moreover, HPC allows us to have different sound qualities in the same project so we can push the engines hard when we want to emulate analog synthesizers, luscious reverbs or accurate solid-state and thermionic valve circuitry that needs advanced resolution at a microsecond’s time domain.

At this critical juncture of entertainment evolution, with 3D & HDR, IMAX Cinema, Dolby® Atmos, DTS® Headphone X, 6K Cinema and 4K TV with HDMI 2 (which has an audio bandwidth of 1536 kHz), the industry creates a roadmap for a quality aware audience.  A true quality upgrade of the overall cinematic experience is on-going. HPC384 Spec. is here to keep music production on par with those innovations and it will provide the necessary tools, specifications and revolutionary techniques so that music professionals will be able to produce and deliver high quality content to meet the demands and expectations of their audience.

Preliminary Tests

In our preliminary tests we rendered the first ever reverb at 1536kHz using U-He Zebra 2 VST clocked at 384 kHz as our sound generator. This sound is quite likely the most mathematically complex and harmonically rich single sound ever created in the digital domain. Sound examples here: http://www.hpcmusic.com/#!hpc384/crrb

U-He Diva, which is an advanced VST instrument, could playback in real time at 384 kHz with infinite notes of polyphony while the same instrument when used in a top-of-the-range workstation cannot perform more than few notes at 192 kHz. The highest bandwidth we managed to work with was 6144 kHz. We use bandwidth as a measure of efficiency of the system when it comes to music production. This way, when software developers are ready for heavy mathematics in low latency, almost real-time performance, we would know how to setup this reality-engine. Moreover, Dolby is heavily experimenting with many surround channels in order to enhance the localization information of sound. Using HPC we can go a step further and enhance the localization information of music (and not only sound) by composing and arranging in many-channel surround formats in a fully discrete way (3D Music)

On a cost per GFLOPS basis, we found that HPC for music can be roughly 35X better than the current industry-standard solutions, with 10X more bandwidth we can operate in real-time performance per audio track and enable unlimited track counts (high scalability).

Cost per GFLOPS

The future is about the audience experience

As for next steps, we need to work on the form factor of those solutions and further explore software opportunities. The evolution of music creation leads to an evolution of music enjoyment. In the same way that the vinyl record, walkman, CD and MP3 changed music for the better (or sometimes for the worse), we now see new products on the horizon that can revolutionize the audience experience.

Antonis Karalis

More info at www.hpcmusic.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire