Scaling the Super Cloud

By Nicole Hemsoth

January 15, 2014

“The number one problem we face as humanity is getting people to think outside of the boxes they bought,” says Cycle Computing CEO, Jason Stowe.

His company has made big waves and proven that the combination of Amazon servers and their own innovations can open new infrastructure options for users with HPC applications. For instance, they recently spun up a 156,000-core Amazon Web Services (AWS) cluster for Schrödinger to power a quantum chemistry application across 8 geographical regions. While many of you can project what a supercomputer of that magnitude might cost, the duration of their run to sort compounds cost them around $33,000—and ran in less than a day distributed across 16,788 instances.

They’ve done similar projects at massive scale for a number of other users in life sciences and beyond—but as they continue to scale, they’ve encountered some of the same bare metal challenges HPC centers do, with the added complexity of adding compute across multiple regions, different datacenters, and the need to shut down and spin up machines in a more complicated fashion than an in-house supercomputer might.

The answer to these challenges is found in the company’s own custom-developed Jupiter, the code name for an out-of-this-world HPC cloud management tool that tackles a few key challenges of running large, complex workloads on AWS.

“Back when we did the 50,000 core and million hour runs, at a certain point, scaling the task distribution environment became particularly problematic because traditional batch schedulers and service oriented architectures aren’t geared toward large amounts of compute power coming and going as a workload increases and decreases,” said Stowe. “Also, these environments aren’t very failure friendly—we needed to develop something that would meet both scale and failure requirements.”

This required from-scratch development on Cycle’s part, however, since the workload management options that they might have tweaked (Stowe cites solid ones, including Condor, Grid Engine, PBS, and Platform/IBM) lacked the capabilities for cloud environments and the types of workload tricks needed to run HPC cloud jobs.

“With a lot of the supercomputing environments now that have millions of processors, the schedulers on those are really good at telling all of those processors to do one MPI job. But what we wanted is the exact opposite—we wanted some that could tell hundreds of thousands or millions of processors to do several thousand things at a one time.” In other words, it wasn’t a “simple” matter of telling the cloud-based system to handle one MPI job, for example. It would be doing 50,000 or more MPI jobs inside the distributed computing environment. “We didn’t want to do a batch necessarily but we wanted to support low overhead scheduling so you can do more programmatic scheduling of workloads and get interactive results back.”

One of the other challenges of working with servers across several geographic regions is making sure that there’s built-in fault tolerance as well as an eye on efficiency. Prices and compute cycles are in a state of flux, so Cycle needed to build in the ability to turn off entire servers, datacenters and even regions if needed to keep applications going in the event of downtime. Stowe says they experimented with this feature, which is both manual or automated depending on user policies. They shut down all the processors in Australia during one experimental run because they weren’t getting enough juice, which rerouted that processing to another region.

In terms of the overhead for Jupiter, Stowe says that there are very few servers required. “We were recently able to manage 16,000 servers with only a handful of servers—under 20,” Stowe said. These few servers provided all the task distribution services for the 156,000-core run across 8 geographic regions and if we needed to, we could have gone with fewer. The only reason we didn’t is because we wanted to have one head node in each region.”

The Chef-based Jupiter tools were built from the ground up, with early lessons about how to make a highly scalable, low overhead cloud scheduler coming from work in 2009 for a custom financial services cloud project. The goals toward scalability and reliability were similar, but they’ve been able to make the offering robust enough to tackle the Schrödinger example cost effectively and in the manner they’d hoped.

Cycle will ramp up the story and accessibility of Jupiter (named after the planet, which has massive clouds) in 2014 in ways similar to what happened with Yahoo and Hadoop. “We’ve had significant vetting around this software, we’re working toward making it easy to download so it will be more widely available.”

Despite the often-cited challenges for HPC clouds, including higher latencies, security and other perceived barriers, clouds adoption in high performance computing is growing. Just a few years ago, only around 10% of HPC sites reported using clouds, but according to the most recent IDC estimates, it’s jumped to close to 24%. While this can lead to a discussion about public versus private clouds (as the considerations are somewhat different), Stowe sees this is an affirmation of what his company has been pushing for the last several years—the idea that clouds can be rendered robust enough to perform well for complex applications at massive scale without borders.

The technical hurdles including security, onboarding applications, operational management, reporting and running cost effectively at high performance are being addressed in the many hyperscale environments that provide the web service many of us count on—from Facebook to Netflix and Google. Stowe and his company have stashed away lessons and tools from that world and meshed them with their long experiences working with HPC applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire