How HPC is Hacking Hadoop

By Nicole Hemsoth

February 11, 2014

Although the trend may be quiet and distributed across only a relative few supercomputing sites, Hadoop and HPC are hopping hand-in-hand more frequently. These two technology areas aren’t necessarily made for another—there are limitations in what Hadoop can do. But a stretch of recent research has been pushing the possibilities, especially when it comes to making Hadoop fit data-intensive corners of scientific computing applications.

Despite the infrequency of news around Hadoop powering key research applications, we’ve watched key centers on this path, including the San Diego Supercomputer Center (which was one of the first to publish a comprehensive overview of using Hadoop on HPC resources) with great interest, and listened as nearly all major HPC system vendors (and many software ones too) targeted Hadoop users with key enhancements, tailored distributions, or even new product lines.

The research momentum behind Hadoop for HPC systems picked up in the last couple of years in particular. Among notable items are other explorations of Hadoop for data-intensive science, adapting MapReduce to an HPC environment, exploring it across different parallel file systems, handling scheduling and more. There are well over 2,000 peer-reviewed articles covering some aspect of this trend. The general theme, when you map it out and reduce it to a few words, is that the tooling required for HPC systems can be tweaked to fit Hadoop, especially when the purpose (offering a potential for more streamlined data management/processing on certain problems) is clear.

When it comes to data-intensive computing and Hadoop’s potential role in HPC, Dr. Glenn K. Lockwood at the San Diego Supercomputer Center (SDSC), is one of the key sources for information about specific challenges and opportunities. Most notably, Lockwood’s work on Hadoop for large-scale systems has drawn attention, particularly in terms of his work with the open source “big data” platform’s role on the Gordon system at SDSC.

Gordon is SDSC’s flash-based data-intensive computing resource. Although aimed at “big data” scientific computing, the Appro-built system still packs some serious compute power with its 16,160 cores, ranking at #88 on the most recent Top 500 list. The true measure of performance for Gordon, which was built to tackle data-intensive challenges, is in its input/output operations per second (IOPs) measurement—back when the machine was undergoing its acceptance cycle, it achieved 35 million IOPs. All of these elements made for some prime experimental ground for Lockwood and his colleagues.

In his role as a User Services Consultant at SDSC, Lockwood has been tracking a number of projects across the data-intensive computing spectrum. His most recent explorations, aside from running Hadoop clusters on Gordon, include writing Hadoop applications in Python with Hadoop Streaming, using (and finding parallel options for) the R language across supercomputers, and benchmarking several data-intensive computing frameworks, architectures and usage models.

“Although traditional supercomputers and Hadoop clusters are designed to solve very different problems and are consequentially architected differently, domain scientists are becoming increasingly interested in learning how Hadoop works and how it may be useful in addressing the data-intensive problems they face,” explained Lockwood.  “Making Hadoop available on Gordon has really made it easy for researchers to explore the features and benefits of Hadoop without having to learn an entirely new cloud API or be a systems administrator.”

He explained that instead, users can launch a Hadoop cluster by submitting a single pre-made job script to the batch system on Gordon with which they are already familiar. A “personal Hadoop cluster” is then launched on their job’s nodes, and users can then load data into their cluster’s distributed file system and run map/reduce tasks.  “Literally one single qsub command starts up a fully featured Hadoop cluster on Gordon’s 40 Gbps InfiniBand fabric with HDFS that is either backed by Gordon’s 300 GB SSDs or its Lustre filesystem,” said Lockwood. “This translates into Hadoop clusters capable of ingesting data to HDFS at a rate in excess of 750 MB/s and completing a 1.6 TB TeraSort in under 15 minutes. Because Gordon delivers this high performance both in traditional and Hadoop-based workloads, researchers can make meaningful performance comparisons on production-scale datasets.”

Lockwood highlighted how this has dramatically reduced the entry barrier for domain scientists who want to see what role Hadoop might play in their analyses, and it follows that training and exploratory work has driven a lot of the Hadoop use SDSC is currently seeing on Gordon.  “Faculty and researchers at universities nationwide have been using Gordon to teach courses in data analytics, and we’ve also been providing plenty of hands-on training to the local and national research communities via XSEDE, SDSC’s Summer Institute, PACE’s Data Mining Boot Camps, and UCSD’s Extension program.  In addition, we’ve provided cycles and classroom training for many applications built upon Hadoop including Mahout, Pig, HBase, and RHadoop.”

In Lockwood’s view, ultimately, Hadoop’s application in the traditional domain sciences is still in its infancy because the application ecosystem based on Hadoop is not as mature as the MPI-based ecosystem.  However, he says there is momentum in several non-traditional domains, including bioinformatics and anthropology, which are embracing Hadoop for production research on Gordon due to the natural fit of these domains’ problems with the map/reduce paradigm. “For example, we are supporting several projects that have begun exploring software built upon Hadoop such as Crossbow, CloudBurst, and SeqPig as scalable alternatives for massive genomic studies.  The evaluation process is still early on, but being able to run these Hadoop-based applications alongside the standard toolchain on Gordon is what is making the effort tractable.”

For anyone interested in the challenges and opportunities of deploying Hadoop on a complex system like Gordon, Lockwood has provided a rich overview here.

Aside from Lockwood’s work and that of his colleagues at SDSC, we wanted to point to some other projects that are helping HPC hack Hadoop to make it fit into a more complex environment. The following short list are a few of our top picks.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire