Intel Etches HPC Niche with Xeon E7 V2

By Nicole Hemsoth

February 18, 2014

Intel has finally pulled the lid off their Westmere-followup processors with the new Xeon E7 v2 series, which while generally targeting enterprise big data and analytics workloads, offers far more for HPC than might meet the eye.

Despite the range of targeted application areas, the 22 nanometer process, memory capabilities, robust AVX instruction capabilities, and unique reliability features make this well suited for HPC. Intel has managed to slice a sizable piece of performance to create a 120-core “HPC cluster in a box” that while higher in price than the previous Ivy Bridges that rolled out last September, could be a suitable fit for a wide swath of technical computing workloads.

As Intel’s Joe Curley told us today, “The E7s offer a ton of density in a node and this is indeed a great HPC story–as well as a great big data and enterprise story. Any type of application where you need a lot of memory and reliability and you’re doing a long set of calculations, that’s where the E7 set of products is going to do really well for you.” You end up with 120 cores in a node, 12 terabytes of memory maximum, you can fit a lot of density and compute there and there are HPC and many other workloads that this will be ideal for.”

Before we dive into the specifics, it’s worth acknowledging that one of the most fascinating aspects of this more general E7 v2 announcement is how Intel was able to balance out a multitude of goals and targets for a wide range of potential workloads via a segmentation model. It would have been perfectly feasible for this same news to span across several versions of the same essential chip sporting variations in cache or clock speeds—but these are actually well-optimized for the workloads being targeted and can be broken down along multiple lines according to priorities (power draw, memory and cache requirements, clock speed, etc.). In other words, the marketing for the E7 v2 is that there’s almost guaranteed to be something for everyone, in all price ranges and across nearly all workloads.

For context, take a look below at the two comparison charts that compare the Westmere predecessor (the E7-4800) with against SPEC (at the top) and then according to LINPACK performance just underneath.

 slide70And for LINPACK

slide71

The AVX capabilities are another noteworthy feature in these new processors—a point to consider with the LINPACK slide above. The 256-bit AVX vector units in the Ivy Bridge core can do eight double-precision floating point calculations per clock cycle via two AVX units per core (4 per AVX unit). This is good news for HPC on this front since the Westmere didn’t have any AVX at all.

The thing to notice here is that if you look below at the figures with 15 cores operating on this level, you’re looking at 1.246 teraflops—which is right on par with the Xeon Phi. Theoretically, this means that for those who aren’t concerned with the price (and the difference is quite hefty) it’s possible to circumvent the Xeon Phi and the programming talent required to get code up to snuff entirely and stock a cluster with these parts instead. Whether or not shops will consider this is up in the air—especially since this comparison won’t be valid by next year if rumors are correct and a three-teraflop Phi chip actually emerges.

According to Curley, “The products complement each other. Each Xeon Phi coprocessor has greater peak FLOPS and memory bandwidth per device, but lower memory capacity. The Xeon E7 Family provides very large memory capacity per processor, and allows up to 8 processors per node.”

The products address different application spaces for the most part, but as part of a portfolio produce an outstanding economic return for application developers, said Curley. “The Intel Xeon E7 Family is optimized for computing with memory density per node, superior results when compared to RISC and mainframe alternatives, and server consolidation markets. Xeon Phi addresses highly parallel applications that can take maximum benefit of Xeon Phi’s performance per watt.”

But the key advantage between them remains that applications optimized for Xeon Phi use the same core, thread, and SIMD elements – meaning applications optimized for one can be moved to the other – a critical advantage for developers.

Take a look at the chart below, which shows the 20 ways you can slice the E7 v2 for 2, 4 and 8 socket variants across different workload types via the basic, standard and advanced configurations, all of which offer some notable tradeoffs (or none at all for the big spenders) in core counts, cache and clock speeds to fit a variety of both memory, compute and energy demands. The segment optimized for HPC (bottom right with my red arrow) the E7 8857 v2, is available in an 8-socket version only with 12 cores running at 3.0 GHz in 30 megabytes of cache in 130 watt envelope for $3838 (versus the other 8-socket optimized variants that offer 3.2 ghz clockspeed, full cache and of course, more cores. The fact that specific optimized part is only available in 8-socket is definitely noteworthy; Intel has always offered 2 and 4-socket versions of previous offerings.

FullSlide66

Intel’s Curley told us that while there is a segment optimized offering in 8-node configuration, this by no means limits the options for HPC shops and OEMs. “If you wanted to try to build big a lot of memory capacity or bandwidth on a two-socket node you could use smaller E7 line products. OEMs will configure this in a number of ways. There are different feature sets across the line; the line is built for the greatest memory density per core, it has a lot of bandwidth per core, it’s built for even greater levels of resiliency to support mission-critical applications in ways that previous generations didn’t address to this degree.” In other words, as with everything in HPC–it all depends on where your priorities lie.

In this E7 world of multiple possibilities, there are a number of configurations that serve different needs, as highlighted below. As Intel demonstrates via the 120-core cluster in a box-themed slide below, if you have four 2-socket servers of the previous generation, you can do the same amount of work by jamming it into two four-socket servers, but run at around 2.5x faster (thanks to the QuickPath Interconnect, which is way faster than Ethernet).

Slide74The beauty of the model is that for HPC workloads in particular (keep in mind that the sweet spot for average job sizes in HPC hovers around the 128 core mark) it’s possible to speed up the work using the same number of processors and farm it out to larger, more memory-stuffed nodes that are designed to run faster.

To put this in some real-world performance context, consider the (somewhat wonky) chart below, which uses the baseline of the Ivy Bridge they rolled out last September. Intel wasn’t crossing out their own numbers there; rather, the crossed-out number represents the average performance boost for a broad range of similar workloads—in essence, an average figure across multiple applications in a domain. The higher number with the application name is a top performer, hitting the app high-water mark they reference on the top left.

In other words, using the life sciences example, while most life science applications they benchmarked came out at around 2x the performance, MILC hit 3x. Similarly, when it came to financial services, the average performance increase across a range of common applications was 2.4 while Black Scholes in particular topped out at 2.6x. Even without data on how many applications were benchmarked to come up with the average, you get the idea…

Slide73On another note, for those who are interested in bandwidth, Intel has had single device data correct, or SDDC, in the memory controllers used with its server processors since the 1990s. What it does, in essence anyway, is allow for a faulty DRAM memory chip to be taken out of the memory pool and isolated. You can heal around one bad chip and correct errors. With the Westmere E7s, given the large memory in the system, Intel added a new feature called Double Device Data Correct.

With this feature, Intel could correct errors after two chips failed on a memory module. With the new performance mode, Intel is allowing customers who want to speed up the memory buffer chips and therefore get more memory bandwidth out of the system to step back to single chip recovery mode. In the normal DDDC mode, which is called lockstep mode now, both the SMI2 memory buffers and the memory chips run at the same speed: 1600 MT/sec. With the new performance mode, the SMI2 memory buffers run at 2667 MT/sec, and the memory runs at half that speed. The net effect is that in performance mode, the system bandwidth is increased by 54 percent compared to lockstep mode. Some error correction capability is sacrificed for the sake of bandwidth.

slide40

All of this theoretical at this point, mind you–we can write the real story when some early users lend us their experiences and insights. As it stands, this story just broke and again, the real emphasis is on databases (the SAP HANA tale is certainly compelling–follow that at EnterpriseTech this week).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire