The In-Memory Key to Real-Time Analysis

By Dr. William Bain

March 6, 2014

Real-time analytics offers enterprises the ability to examine “live,” fast-changing data within operational systems and obtain feedback in milliseconds to seconds. For example, a hedge fund in a financial services organization can track the effect of market fluctuations on its portfolios (“strategies”) of long and short equity positions in various market areas (high tech, real estate, etc.) and immediately identify strategies requiring rebalancing. An e-commerce company can reconcile orders and inventory in real time to avoid a shortfall in inventory and ensure that orders are accurately filled.

Use Data-Parallel Computing to Avoid Data Motion

The key to real-time performance, especially for growing workloads, is to use memory-based, data-parallel computing. Building on fundamentally the same parallel computing architecture as supercomputers used in scientific applications, in-memory data grids (IMDGs) run on a clustered set of servers to hold and analyze memory-based data. IMDGs keep access times constant, which is exactly the characteristic needed by applications which have to handle growing workloads. More significantly, some IMDGs can host data-parallel applications to update and analyze data stored on the grid’s servers. This is the key to their ability to perform real-time analytics.

The performance benefits of the data-parallel approach are dramatic. To illustrate this, take a look at some performance measurements for a risk analysis computation in financial services modeled using a technique called “back testing.” This analysis compares a variety of stock trading algorithms using recorded price histories for a collection of equities. Each price history was stored in a single object within the IMDG, and the servers were assigned equities to analyze. (Note that the IMDG’s in-memory storage also could dynamically update the price histories from a ticker feed to enable real-time feedback to a trading system.)

The following chart compares the conventional “task-parallel” technique in which the servers analyze a random set of equities to the data-parallel technique in which the servers only examine equities stored on the same server.  Note how the data-parallel approach (red line) maintains linear performance scaling as the workload increases and IMDG servers are added to the cluster. In contrast, the task-parallel approach (blue line) fails to achieve performance scaling due to accessing objects from remote servers which creates substantial networking overhead.

By avoiding data motion, the data-parallel approach delivers much higher performance. All data is analyzed in place without the need to send it over to network to another server for analysis. IMDGs which perform data-parallel analysis can take full advantage of this linear speedup to deliver results with the lowest possible latency. This enables them to run real-time analytics on fast-changing data held in the IMDG, and they combine the IMDG’s in-memory storage with scalable computation to implement complex applications.

An Example in Financial Services

Consider the example of a hedge fund tracking its trading strategies for the market sectors it tracks. The data for these strategies can be stored within an IMDG as a collection of objects, each of which represents a market sector, such as high tech or real estate, and holds the equity positions and rules for that market sector. Because the IMDG automatically distributes the objects within a collection across all grid servers, it ensures that data-parallel analysis will be load-balanced across the cluster.

The IMDG continuously runs a data-parallel computation that both updates each strategy object with a snapshot of market price changes from an incoming market feed and evaluates the strategy to determine if stock trades are needed. By performing this analysis in parallel across all strategies, the IMDG generates results in milliseconds instead of several minutes needed by conventional disk-based, sequential analysis. No data motion is needed to perform the data-parallel analysis, and maximum performance is achieved.

The following diagram illustrates how the IMDG hosts a set of strategies and performs this analysis while updating them with a live market feed containing snapshots of price changes. The analysis produces a stream of alerts to the trader (or to an automated trading system) for strategies that need rebalancing. The diagram shows the data parallel analysis being performed by a technique called parallel method invocation (PMI), which executes the analysis code in parallel on all objects and then globally combines the results for delivery to the trader:

The net effect is that the hedge fund now can update its strategies and obtain alerts in real time to rebalance its portfolios based on current market conditions. A proof of concept implementation using 2K strategies and tracking a total of 40K positions on a cluster of four servers delivered alerts within about 330 milliseconds. This was measured to be more than 40X faster than running this analysis on the Apache Hadoop platform and shows the power of IMDGs to perform real-time analytics.

Summing Up

In-memory data grids offer a powerful yet easy to use platform for hosting fast-changing, in-memory data and running highly scalable, data-parallel computations. This allows IMDGs to be seamlessly integrated into operational systems and perform real-time analytics on “live” data, opening up many new opportunities to add value to these systems.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire