Titan Captures Liquid-Crystal Film Complexity

By Tiffany Trader

April 14, 2014

Liquid-crystal displays (familiar to most as LCDs) rely on the light modulating properties of liquid crystals to bring images to life on a wide variety of screens. From computer monitors to televisions to instrumental panels and signage, LCDs are a pervasive element of modern life.

LCDs employ high-tech films, which must be both thin and robust. The problem is that these films degrade over time as liquid-crystal “mesogens,” which make up the films, redistribute to areas of lower energy in a process called dewetting. Eventually the film ruptures.

Recently a team of scientists at Oak Ridge National Laboratory put the lab’s Titan supercomputer – packed with 18,688 CPUs and an equal number of GPUs – to work to better understand the mechanics of this process, as reported on the OLCF website.

Some of the important uses of high-tech films include protecting pills from dissolving too early, keeping metals from corroding, and reducing friction on hard drives. When the films are manufactured using liquid crystals – macromolecules with both rigid and flexible elements – the innovation potential goes through the roof.

The rigid segments support interaction with electric currents, magnetic fields, ambient light and temperature and more. This has led to the material’s wide prevalance in 21st century flat-panel displays. Researchers are actively looking to expand the use of liquid crystal thin films for nanoscale coatings, optical and photovoltaic devices, biosensors, and other innovative applications, but the tendency toward rupturing has stymied progress. By studying the dewetting process more closely, scientists are paving the way for a better generation of films.

For several decades, the prevailing theory held that one of two mechanisms could account for dewetting, and these two mechanisms were mutually exclusive. Then about 10 years ago experiments showed that these two mechanisms did coexist in many cases, as Postdoctoral fellow Trung Nguyen of Oak Ridge National Laboratory (ORNL) explains. Nguyen, who was coprincipal investigator on the project with W. Michael Brown (then at ORNL, but now working at Intel), ran large-scale molecular dynamics simulations on ORNL’s Titan supercomputer detailing the beginning stages of ruptures forming on thin films on a solid substrate. The work appears as the cover story in the March 21, 2014, print edition of Nanoscale, a journal of the Royal Society of Chemistry.

“This study examined a somewhat controversial argument about the mechanism of the dewetting in the thin films,” stated Nguyen.

The two mechanisms thought to be responsible for the dewetting are thermal nucleation, a heat-mediated cause, and spinodal dewetting, a movement-induced cause. Theoretical models posited decades ago asserted that one or the other would be responsible for dewetting thin film, depending on its initial thickness. The simulation validated that the two mechanisms do coexist, although one does predominate depending on the thickness of the film – with thermal nucleation being more prominent in thicker films and spinodal dewetting more common in thinner films.

The impetus for the ruptures is the liquid-crystal molecules striving to recover lower-energy states. While still in the research stages, it is thought that this finding may boost innovation in using thin films for applications such as energy production, biochemical detection, and mechanical lubrication. The research was facilitated by a 2013 Titan Early Science program allocation of supercomputing time at the Oak Ridge Leadership Computing Facility. Nguyen’s team went through the ORNL’s Center for Accelerated Applications Readiness (CAAR) program, which gives early access to cutting-edge resources for codes that can take advantage of graphics processing units (GPUs) at scale. Under the CAAR program, Brown reworked the LAMMPS molecular dynamics code to leverage a large number of GPUs.

Titan, the most powerful US supercomputer and the world’s second fastest, has a max theoretical computing speed of 27 petaflops and a LINPACK measured at 17.59 petaflops. The Titan Cray XK7 system is also the first major supercomputing system to utilize a hybrid architecture using both conventional 16-core AMD Opteron CPUs plus NVIDIA Tesla K20 GPU parts.

The researchers utilized Titan to simulate 26 million mesogens on a substrate micrometers in length and width, employing 18 million core hours and harnessing up to 4,900 of Titan’s nodes. The study lasted three months, but would have taken about two years without the acceleration of Titan’s GPUs.

“We’re using LAMMPS with GPU acceleration so that the speedup will be seven times relative to a comparable CPU-only architecture – for example, the Cray XE6. If someone wants to rerun the simulations without a GPU, they have to be seven times slower,” Nguyen explained. “The dewetting problems are excellent candidates to use Titan for because we need to use big systems to capture the complexity of the dewetting origin of liquid-crystal thin films, both microscopically and macroscopically.”

This is the first study to simulate liquid-crystal thin films at experimental length- and timescales and also the first to relate the dewetting process to the molecular-level driving force, which causes the molecules to break up.

The Nanoscale paper was also authored by postdoctoral fellow Jan-Michael Carrillo, who worked on the simulation model, and computational scientist Michael Matheson, who developed the software for the analysis and visualization work.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire