Advanced Wind Farm Simulations Key to Energy Strategy

By Tiffany Trader

May 14, 2014

With energy consumption on the rise around the world, interest in renewable energy sources has taken off. Wind power is a major component of the US energy strategy – it’s known for being affordable, efficient and abundant, as well as being pollution-free. Over the last decade, wind turbine farms have become a common feature, dotting landscapes across the nation, and today such massive operations comprise 4 percent of the total electricity generated in the US.

While wind power has many positive attributes, its main downside is its sporadic nature. In fact, actual power production is correlated with a range of atmospheric variables, such as wind speed and turbulence, as well as spatial and temporal scales.

Getting the most energy from these mechanical giants is thus a complex endeavor, but research teams are working hard to reduce the uncertainty that affects wind power forecasts. One of the main sites dedicated to optimizing wind power in the US is Lawrence Livermore National Laboratory. The lab has about a dozen atmospheric scientists, mechanical and computational engineers, and statisticians using fieldwork, advanced simulation, and statistical analysis to boost wind power production. High-performance computing is integral to the effort.

Jeff Roberts, Program Leader for Renewable Energy and Energy Systems, recently published a letter describing the lab’s role in developing this valuable resource.

“We must reduce our dependence on imported fossil fuels while ensuring plentiful clean energy with renewable sources,” Roberts writes. “The wind, however, is an intermittent resource that is challenging to predict, sometimes varying significantly from minute to minute. What’s more, complex atmospheric factors, such as turbulence, and topographical features, such as hills, modify the wind speed and direction and hence the power that can be extracted by wind turbines. Turbulence also plays an important role in the reliability and life span of turbine components.”

These simulations can be extraordinarily complicated, says Roberts. The complexity is owed to length scales that can an span eight orders of magnitude – from millimeters in the rotor-blade boundary layer to 100 kilometers for large atmospheric weather patterns.

“Simulating wind change and its effects on turbines is challenging because of the complex forces driving wind,” explains Livermore mechanical engineer Wayne Miller, associate program leader for wind and solar power. “We’re essentially simulating a fluid flow in an environment where factors such as aerosols, clouds, humidity, surface–atmosphere energy exchange, and terrain influence to varying degrees both the complexity of the flow and how much power can be extracted by a spinning turbine.”

The computational challenges are numerous, especially when simulating farms of more than 100 turbines. Terrain variations can significantly alter output from one turbine to the next and there are wakes coming from the spinning turbine blades that diminish power from turbines downstream. To negotiate these complexities, scientists are expanding the applicability of the Weather Research Forecasting (WRF) modeling system to be suitable for wind farm scale. Developed primarily for larger-scale weather applications, WRF is maintained by more than 10,000 users and contributors worldwide.

The model was modified for use at smaller scales and to satisfy the multiscale requirements of wind power forecasting. For example, a job may start out with a simulation of the western US to capture the dominant weather patterns. Then a combination of smaller grid spacing and models developed at Livermore are pulled in to accurately capture the smaller-scale features that affect wind farms.

The project seeks to blend WRF atmospheric simulation with scales of motion that are typically the purview of computational fluid dynamics (CFD) codes. To more expertly capture the complex interplay of variables, Livermore scientists have brought in a number of codes, such as WRF-GAD, immersed boundary method (IBM), as well as CGWind and HPCMP CREATE-AV Helios (aka HELIOS), which are used for even smaller-scale simulations that are outside the range of WRF.

A team of scientists from Livermore and University of Wyoming employed the WRF model and HELIOS to perform the first-ever simulation of a 50-turbine wind farm that takes into account individual spinning turbine blades using turbulent winds. This degree of precision and realism is helping researchers to understand why real wind farms fall short of their theoretical counterparts.

Atmospheric scientist Jeff Mirocha is one of the project leads exploring ways of studying phenomena that are specific to a wind farm environment. “The simulation framework we are developing will provide advanced tools to address these knowledge gaps,” he says, “leading to improved operations, longer component life spans, and ultimately cheaper electricity.”

President Barack Obama’s administration has set a goal for the nation to obtain 20 percent of its electricity from wind energy by 2030. The LLNL team thinks that’s a reasonable goal given the current high rate of wind turbine deployment nationwide. From 2008 to 2012, wind power capacity has expanded by 167 percent.

With precision models like the ones LLNL and its parters are developing, wind farm developers and operators have the information they need to select ideal wind farm locations and run the sites more efficiently.

“It’s a big team effort,” says Livermore’s Miller. Other collaborators include National Renewable Energy Laboratory, National Center for Atmospheric Research, University of Colorado at Boulder, Sandia and Pacific Northwest national laboratories, University of Wyoming, University of Oklahoma, University of California at Berkeley, U.S. Army, and other wind power industry stakeholders. Funding comes from the Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy, as well as Livermore’s Laboratory Directed Research and Development (LDRD) Program, and industrial partnerships.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire