What Drives Investment in the Middle of HPC?

By Nicole Hemsoth

May 15, 2014

When it comes to covering supercomputers, the most attention falls on the front runners on the Top 500. However, a closer look at the tail-end of the rankings reveals some rather interesting use cases—not to mention courses of development, system design, and user-driven requirements for future build out.

The University of Florida is home to one expanding system, which rests just at the cutoff of the top supercomputing rankings at #493. The university’s Director of Research Computing, Dr. Erik Deumens, tells us the real purpose of the system is to support as many diverse applications as possible with as few queue barriers as possible. While this is a familiar claim no matter what size the site may be, the team has gone through great lengths to ensure that current developments to make their flagship system, called HiPerGator, are fed solely by user demand.

It might not be surprising then, at least to those in research computing, that the demand for the latest generation of processors with a 10 or 20% performance jump is far less critical than simply being able to onboard an application without a long queue and run in a reasonable amount of time. But meeting that need requires some serious thought about capacity, scheduling, and meeting diverse application requirements. In other words, for those tuning in for the ultra-high performance computing story, this isn’t the most exciting tale, but there are some important lessons to be learned from his team’s experiences working with a broad range of applications and over 600 users to find out what really creates a fully functional system—all based on what amounts to an “economic” decision-making process for their HPC investments.

In essence, the economics of demand determine the spending decisions at the University of Florida and several other similar centers. This isn’t so different than the large scientific computing sites in theory, except user requests trump all—including power or other considerations. “If the users are asking for the latest novel technology but it’s not the most efficient, we aren’t going to deny them what they need for their research,” says Deumens. In the case of HiPerGator, the university funds the system and staffing so that that individual researchers can use their grants to buy a desired number of cores for their jobs. Flexibility is built into the “purchase” as users can go past 10x what they requested as needed to avoid added complexity in terms of scheduling and managing their jobs. Deumens and team use Moab and Torque to handle the many requests, in addition to offering the capability for more sophisticated users to fine-tune their requests according to the mix of available architectures. The system tends to run under its maximum capacity at all times so that there are not long wait times since the one thing that researchers want—timely (if not immediate) access to computational resources that run in the anticipated timeframe. And essentially, says Deumens, everyone is happy.

For some background, the HiPerGator system in its original incarnation (announced last year) offered up over 16,000 AMD “Abu Dhabi” cores with Dell underpinnings, a 2.88 petabyte Terascala-built Lustre-based system and Mellanox’s Infiniband throughout. They’ve since added an additional round of cores from pre-existing systems (both Intel and AMD), bringing their HPC core count to over 21,000. There is a set of nodes that provide a total of 80 GPUs in addition and more planned for the future—in addition to the possibility of Xeon Phi cores as well as they plan their build-out to be completed by this time next year. “There are always exceptions but most of our users don’t care what processor generation they’re running on. They just want to get their work done.” And all the while, his team keeps very careful track of what the users are looking for in terms of new or existing hardware and they use this information to tally what they ask vendors for during each year’s hardware and software buying cycles.

To put this in context, when the original HiPerGator emerged, there were a total of 8 GPUs available to researchers, which they bought simply to support the mission of a semester-long class that required them for special projects. However, once researchers at the university knew they were available, they began experimenting with porting codes, including AMBER on the molecular dynamics front. These development activities led the application teams to desire full production runs, which required more GPUs. And so their unexpected influx of GPU nodes occurred organically. This is the exact type of case that will feed how the next generation of their system develops—actual user interest means more “purchases” from researchers, but to keep their one main goal of providing solid resources without the wait times, they’ll make sure to supply ample nodes with whatever the research community seems to desire.

Deumens and team are taking those desires on the road in the next months. They’re currently in the midst of looking for vendors to help them supply the needs of HiPerGator 2, which again, is slated for this time next year. He gave us a sense of what works—and doesn’t—when it comes to supporting research at a university that wants to become a top tier research center based on its HPC capabilities.

First, he says, there are some successes in terms of their approach to scheduling. It used to be a manual process, but has been eased through their Moab and Torque engines. Further, he highlighted the increasing role of Galaxy, the open source scientific gateway project for creating, tracking and sharing scientific workflows that has taken off in the biosciences community. He also says that for a research center their size, the more cores they have available, the better. While some of their users can take advantage of their Infiniband fabric and run MPI or SMP jobs, in the end it’s all about getting up and running.

The other element that has worked for research teams at the University of Florida is having a stable, strong storage system like their Terascala solution, which is capable of handling massive data flows—an increasing problem for all scientific computing sites as data demands scramble to meet the computing capacity that is available.

What’s missing from their system is something that will be difficult for any of the vendors who supply the next iteration of the machine next year. And it’s something we’ve heard from much larger centers. There is a dramatic need to make a “super app” of sorts that turns a researcher’s desktop machine into a direct link to the supercomputing site, handling scheduling, data movement, and output in a seamless, portable interface. While this seems like it might be easy in this era of web-based interfaces for everything, it’s what’s really missing for centers designed around simply serving scientific users—and something that he and his team will continue to look toward in the coming years.

It was interesting to listen to the difference in concerns about power, performance and ease of access from the perspective of a much smaller HPC site than the top ten system managers we so often talk to. Power is always a concern, of course, but at smaller scale when exascale is something for the DoE and other government labs internationally to worry about, the problems of real-world daily operations boil down to one simple factor—make a supercomputer easy to use, quick to load into, and predictable in its time to result. A humbling reminder after so many conversations about eeking performance out of the hottest processors, largest systems and biggest power footprints on the planet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire