Intel Gives Code Modernization Fresh Push

By Nicole Hemsoth

May 28, 2014

In the conversations leading up to exascale, one of the most frequently cited pain points is the need for massive software optimization and code modernization. But this isn’t just a relevant topic for the largest system operators at the supercomputing pinnacle.

According to Intel’s General Manager of the Technical Computing Group, Charlie Wuischpard, there are many centers, both academic and commercial, that are leaving incredible performance gains on the table because of a lack of appropriate investment in their codes, many of which aren’t taking advantage of the number of cores, vectorization, and other capabilities that sit idle in modern manycore and multicore architectures.

While the need for disruptive measures to wake application owners up to the possibilities of exploiting these capabilities isn’t news to most, there are a couple of barriers that chipmaker hopes to break with an expansion of their Intel Parallel Computing Center program, which launched in October of last year and due to demand, has been expanded with a new call for proposals. While the support and guidance, financial and otherwise, these centers receive from the company are not modest, the real problem is higher level than simply digging into aging code. As with so many other challenges in commercial and research HPC, it’s a matter of funding.

According to Bob Burroughs, Director of Intel’s Technical Computing Ecosystem Enablement, the standard for institutions and companies they work with is to show performance and ROI gains based on hardware-driven generation jumps, which by default offer greater performance. But as many are quickly becoming aware, that mode of boosting systems hits a brick wall when the compute far outpaces the code. In other words, the historical vision Intel and others have pitched has spoken directly to the hardware and infrastructure decision makers. But without direct investment in the software and application side of the house as a priority, adding more, faster cores will fall continuously flat. So the issue becomes an institutional one—both in research and commercial HPC. It’s a new flow of investment driven to internal groups that generally don’t touch much of the hardware investment decision-making.

Wuischpard and Burroughs said they were bowled over by the interest in their Parallel Computing Center Program—not simply because it showed there is definite interest from a wide community, but more important, because it shows just how little external investment there seems to be in this most critical area. The hardware ROI discussions are so often center stage at institutions with too little recognition of how the real return on any such investment is hinged directly to software refinement and modernization.

The same is true at national labs and government agencies, says Burroughs. It’s far easier for centers to push through big funding for projects that pitch the system-level value, but too often, the software optimization and modernization piece, which incidentally is the most critical component going forward, is not given the funding and effort required to fully maximize the hardware investments. What’s needed, says Burroughs, is a steady, sustained emphasis on modernizing codes to take advantage of the architectures of the future, but this isn’t something that his company alone can spearhead.

“We can’t fund it all,” he says, pointing to his hope that their centers can show real-world gains as a result of these optimizations, thus validating the case for future investments.

Wuishpard reminds that this need for optimization and modernization isn’t just an issue for the large labs and academic centers to consider in a future roadmap sense. There are 10x-100x performance gains left on the table for a large swath of users who simply hopped from generation to generation with a single-core mindset and no real incentive to make the difficult software investments required. He points to a few innovative places where current and future work is being meshed to extract performance gains now through code modernization with an eye on how the systems of the future will further maximize these investments.

One example he pointed to was the NERSC-8 system, which requires that their application developers start digging into the code to exploit the cores, threads and other capabilities of the selected Knights Landing architecture before the system is ever delivered. He referred also to other representative examples that highlight the current progress of code optimization for coming architectures via the GROMACS work at the University of Tennessee—a project that effectively rendered one of the most widely-used molecular dynamics codes across life sciences future-ready.

Burroughs and Wuishpard shared that Intel plans on highlighting specific examples on real-world codes over the course of the next year to drive home the value of their investment in software optimization. However, with a future defined by manycore and multicore architectures, even without Intel’s investment this should be a priority item for funding agencies, infrastructure decision makers and most important—the code folks themselves. Without their direct involvement, the hardware gains are minimal. We’ll share these stories over the coming about how this critical software work translates into direct gain.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in its cloud service.  Google claimed the CPU is based on cut Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire