UiT Recycles Supercomputing Power with Asetek’s RackCDU™

June 23, 2014

The University of Tromso (UiT) the “Artic University of Norway” is the world’s northernmost university with four campuses spread out across Norway. UiT is already a leader in High Performance Computing (HPC). In 2007 its STALLO cluster became the most powerful cluster in Norway and reached 63rd position in the Top500. In 2014 STALLO 2 is expected to reach 310 Teraflop in peak performance.UiT

UiT’s innovative thinking includes using supercomputing clusters as a heating plant. Specifically, the waste heat from the High Performance Computing facility is the energy source for building and district heating, reducing overall campus energy demand.

“Recently we have moved our attention from counting how many flops we can get out of the supercomputer to how many watts that can be recycled from the same computer” says Svenn Hanssen, Head of Section Research and Educational IT, University of Tromso

UiT believes that hot water cooling is something that gives the Arctic region an advantage and positions the region as a natural place to establish future datacenters. With an average temperature of 4ºC, UiT is an ideal location for re-use of waste heat from data centers. By cutting millions of krones from the power bill, more money can be spent on computing, software and the actual research. Waste heat recovery is also key in UiT’s goal to become the world’s leader in Green HPC.

During the summer of 2014 UiT will complete the build of a new 2MW data center. Its supercomputing cluster is expected to be around 2/3rds cooled by hot water with the longer term goal to make the entire cluster water cooled. The system will use the exit water from cooling the supercomputer as a heat source for the nearby buildings that will expand in the next phase to also provide heat to the hospital next door. The hot water will be used to heat the structures via both wall and ceiling radiators.

UiT began installing Asetek’s RackCDU D2C™ hot water data center liquid cooling in January 2014with the goal of using the supercomputing cluster as a district heat plant. The RackCDU D2C system consists of two key sub systems: D2C™ server coolers that are drop in replacements for the CPU air heat sinks in each server and a RackCDU extension that mounts of the back of each rack. Asetek D2C server coolers bring low-pressure, hot water inside the computing nodes to directly cool high heat flux components such as CPUs, GPUs and memory.

The RackCDU Extension is a 263mm (10.5 inch) cabinet that contains a zero-U rack level Cooling Distribution Unit (hence RackCDU) that exchanges heat between the cooling liquid running through the servers and the liquid in the larger facilities liquid cooling / waste heat recovery loop. Hot cooling liquid moves Rack CDUbetween RackCDU and server coolers via tubes that attach with dripless quick connectors to the RackCDU and via blind mate connectors to the server coolers. The server cooler, connecting tubes and RackCDU are all delivered pre-filled with coolant. Data center operators never have to deal with server cooling liquid.

RackCDU enables much higher rack densities, reduces the overhead power requirements for data center cooling, lowers acoustic noise and enables the use of waste heat to be recouped for building and district heating.

Hot water cooling is highly effective since the surface temperature of a CPU (case temp) only needs to be maintained between 67°C to 85°C (153°F to 185°F), depending on CPU model. The operating surface temperatures for memory chips, GPUs and co-processors is even higher, in the 90°to 95°C (194°F to 203°F) range. The cooling efficiency of water allows it to maintain the required case temps with a low initial temperature difference between the water and the component being cooled, or a small delta T. This means the water used for cooling the components can be hot.  RackCDU D2C is deployable as part of completely new clusters, in server refresh cycles or even as retrofits of existing servers. In particular, there is the ability to implement D2C in many standard air cooled servers offered by OEMs today just as UiT is doing with its HP SL230 servers.

UiT chose to concentrate on D2C cooling of CPUs in the HP SL230 servers used in their HPC cluster. Air-cooled HP SL230’s are a popular choice in the HPC world and RackCDU D2C allows the leveraging these cost-effective nodes to run more efficiently through liquid cooling while enabling high density deployments and substantial power savings.

To make best use of the waste heat a number of factors must be optimized. UiT is manipulating a range of parameters for optimization: flow rates, amount of hot water needed, the temperature of the water, the delta between the supply and return temperature and the size of the supercomputer in terms of possible production of hot water.

Initial testing has shown it is possible to achieve that greater than 70% waste heat recycling with a delta of 25oC between input and exit temperature of the cooling water. The testingUiTto date has been with a rather cold 12oC supply temperature and performance is expected to be even better at higher input temps. Air temperature in the computer room is also a factor. UiT has found that as they increase the room temperature, the water cooled system performance is not affected. Conversely, the air cooled systems start to spend more power for cooling as room temperature rises.

Because it is an HPC computing cluster, a 100% server load is common. The UiT load is typically greater than 80% 24 hours per day/7 days a week, making it ideal for heat capture and reuse.

One of the side effects of moving to hot water cooling and implementing district heating at UiT is the shift in how the supercomputing resource is viewed. No longer is the supercomputer seen as a multi-million dollar yearly expenditure in terms of variable power costs. It is now actually something the whole university expects to be expanded and integrated into the infrastructure to provide heating as well as power cost savings. Indeed, the visibility has built such enthusiasm that there are even artists trying to hook the supercomputer up to new art installations on campus to give different perspectives to the artwork based on the real-time load of the system.

UiT’s leadership in supercomputing is being matched by its mission to become the world’s leader in green High Performance Computing. Not only greening the data center itself but in recouping energy for district heating and having the supercomputing cluster be viewed as a community asset.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire