Getting to Exascale

By Tiffany Trader

July 24, 2014

As the exascale barrier draws ever closer, experts around the world turn their attention to enabling this major advance. Providing a truly deep dive into the subject matter is the Harvard School of Engineering and Applied Science. The institution’s summer 2014 issue of “Topics” takes a hard look at the way that supercomputing is progressing.

In the feature article “Built for Speed: Designing for exascale computers,” Brian Hayes considers all of the remarkable science that will be enabled if only the computer is fast enough.

Hayes explains that the field of hemodymamics is poised for a breakthrough, where a surgeon would be able to perform a detailed simulation of blood flow in a patient’s arteries in order to pinpoint the best repair strategy. Currently, however, simulating just one second of blood flow takes about five hours on even the fastest supercomputer. To have a truly transformative effect on medicine, scientists and practitioners need computers that are one-thousand times faster than the current crop.

Getting to this next stage in computing is high up on the list of priorities of SEAS. Hayes writes that science and engineering groups in the school are contributing to software and hardware projects to support this goal while researchers in domains such as climatology, materials science, molecular biology, and astrophysics are gearing up to use such powerful resources.

From here, Hayes details the numerous challenges that make exascale a more onerous challenge than previous 1000x milestones. For a while, chipmakers relied on increasing clock rates to drive performance gains, but this era is over.

“The speed limit for modern computers is now set by power consumption,” writes Hayes. “ If all other factors are held constant, the electricity needed to run a processor chip goes up as the cube of the clock rate: doubling the speed brings an eightfold increase in power demand.”

Shrinking transistors and putting multiple cores on each chip (multicore) has helped boost the total number of operations per second since about 2005. However, there is of course a fundamental limit as to how small the feature sizes can be before reliability becomes untenable.

From an architecture perspective, systems have gone from custom-built hardware in the 1980s to vanilla off-the-shelf components through the 1990s and 2000s. Now there is a swing back to specialized technologies again. The first petaflopper, Roadrunner, used a hybrid design with CPU working in tandem with specialized Cell BE coprocessors. Now most of the top supercomputers are based on a heterogenous architecture, using some combination of CPUs and accelerators/coprocessors.

The challenges are not just on the hardware side. Hanspeter Pfister, a Wang Professor of Computer Science and director of IACS who was interviewed by Hayes, believes getting to exascale will require fundamentally new programming models. Pfister points out that the LINPACK benchmark is the only program that can rate and rank machines at full speed. Other software may harness only 10 percent of the system’s potential. There are also issues with operating systems, file systems and middleware that connects databases and networks.

Pfister is also quite skeptical of the future of programming tools like MPI and CUDA. “We can’t be thinking about a billion cores in CUDA,” he says. “And when the next protocol emerges, I know in my heart it’s not going to be MPI. We’re beyond the human capacity for allocating and optimizing resources.”

Some believe that the only tenable solution to extreme-scale computing is getting the hardware and software folks in the same room. This approach, called “co-design” will help bridge the gap between what users want and what manufacturers can supply. The US Department of Energy has established three co-design centers to facilitate this kind of approach.

The US DOE originally intended to field an exascale machine sometime around 2018, but that timeline slipped due primarily to a lack of political will to fund the effort. Since then 2020 has been bandied about as a target, but that may also be overly optimistic. One data point in support of getting to exascale sooner rather than later is the need to conduct virtual nuclear testing in support of stockpile stewardship. This program alone, according to one expert interviewed for the piece, is enough to ensure that exascale machines are built. There are other applications that could also come to be regarded as critical for national security, for example climate modeling.

Check out the entire article here, and the complete issue here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire