New Degrees of Parallelism, Old Programming Planes

By Nicole Hemsoth

August 28, 2014

Exploiting the capabilities of HPC hardware is now more a matter of pushing into deeper levels of parallelism versus adding more cores or overclocking. What this means is that the time is right for a revolution in programming. The question is whether that revolution should be one that torches the landscape or that handles things “diplomatically” with the existing infrastructure.

While some argue for a “rip and replace” approach to rethinking code for the new era of computational capability, others, including Intel’s Director of Software, James Reinders, are advocating approaches that blend the old and new—that preserve the order of existing programming models while still permitting major leaps ahead for parallelism.

To these ends, Reinders described the latest release of Intel’s Parallel Studio XE 2015 for us this week, pointing to the addition of new explicit vector programming capabilities as well as the many features inside OpenMP 4.0., which is a significant part of the new release.

It’s not difficult to imagine the arguments in favor of holding steady with a consistent programming model for a manycore world, but few expect that slope will be simple to scale. At the heart of Intel’s approach to meshing the old and new approaches are some key features inside OpenMP 4.0, which Reinders says still amount to “hidden charms” that haven’t been fully explored by the HPC world yet. More specifically, he notes that three key elements to exploiting new hardware capabilities—tasking, vectorization, and offload—are not just present in OpenMP 4.0, they work together in unison and represent a turning point in how we will view the possibilities of preserving programming models and bases for the future generation of codes.

“The question is, can we keep the challenges limited to scaling across cores and vectorization to evolve into this new era instead—can we make that set of challenges the programming problem to solve versus learning exotic languages or abandoning the strong code base we have?” Reinders asked. In answer to this, he pointed to some new work his team at Intel, as well as partners around the world, are doing to enhance this possibility via OpenMP 4.0. in addition to their other Intel-specific math libraries and tools.

The issue right now with OpenMP 4.0 isn’t that the capabilities to achieve the new parallelism/existing programming environment goals. It’s still a matter of knowledge, training, and actual examples that show how the three goals of tasking, vectorization, and offload are working inside the same box with this newest release. Reinders says that the most frequent questions he’s getting now revolve around what’s inside the standard in general—it’s still in a “kicking the tires” phase that he hopes the community can move past, especially in this era of 244-way parallelism potential with the Xeon Phi.

He says some specific examples of the hidden charms of OpenMP 4.0 are contained within the new Collapse directive, which essentially lets the compiler handle the tasking across the cores in addition to vectorization at the same time. In another scenario, it would be possible to do offload and have a loop that addresses tasking and vectorization. In other words, users are doing messy things out of necessity to manage these aspects of performance gains with individual approaches instead of potentially tackling all three of the problems at the same time. The benefit of this is profound, Reinders argued, but said it’s still lost in the overwhelming early experimentation phase many are working through now.

The main addition to the release is explicit vector programming, which Reinders says is of increasing importance. This is an important feature because vectorizing will offer some profound performance improvements for HPC code, which also adds to overall efficiency since it can compute faster with the CPU being set at a lower power state. “The question these days is, how do we start getting codes to take full advantage of vector instructions in modern instruction sets. Languages like C and Fortran weren’t written with this in mind, so there have been a lot of hacks to hint to the compiler to vectorize over the years that aren’t so dissimilar to those were doing to get more parallelism in the 80s and 90s.”

Now, instead of going back and forth with the compiler to get it to auto-vectorize, the goal is to extend the languages so they still look like C and Fortran and let the compiler know that you’re ready to vectorize a loop even if there are some problems embedded in the language itself. In OpenMP 4.0, this is achieved through Pragma OMP SIMD, which is designed to minimize code changes when vectorizing code. It can be used to vectorize loops that the compiler normally wouldn’t auto-vectorize without all the hacks. The graphic below highlights the minimal code change required with the associated performance boost.

IntelResults

“If you think about SSE, which we introduced more than a decade ago, it could do 2 double-precision numbers at a time or four single—and that was cool, said Reinders. “Then AVX comes along, which could do 8 single or 4 double precision floating point operations–but now we’re looking at Phi with AVX 512 and you can do 16 single floating point computations or 8 double-precision. It’s an incredible difference.

In other words, the hardware keeps finding ways to do more, but the difference between not doing vectorization versus doing it can be 16 to 1 with the Phi, for instance.”I’ve taught vectorization for a decade—it was one thing to get people excited about doubling code performance, but when it’s 16x it’s a big difference, too much to ignore.”

For those hoping to see what those performance improvements look like for other code, see the graphic below or find more details about the new updates in Parallel Studio here: https://software.intel.com/en-us/intel-parallel-studio-xe/

IntelResults2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire