Peering Backward to the Big Bang with the CTC and COSMOS

By Paul Shellard

October 10, 2014

At the Stephen Hawking Centre for Theoretical Cosmology (CTC) in Cambridge University, we are endeavouring to push back our understanding to the very beginnings of the Universe, tiny fractions of a second after the Big Bang. Cosmology has had many successes but it leaves many questions unanswered concerning how the Universe came into being and about the matter and energy that fills it. New high precision observations of the Universe offer us important clues because they allow us to see the underlying causes of the formation of cosmic structures, including galaxies, stars, planets, and ultimately ourselves. Such questions about the beginning of the Universe have always fascinated humanity and, from a scientific perspective, the Big Bang represents the ultimate frontier by probing the very highest energies possible. Cosmological experiments also advance other frontiers using the latest state-of-the-art technologies, and their analysis is extremely challenging computationally.

At CTC we develop cosmological theories and test them against observed data using COSMOS, the largest single-image shared-memory supercomputer in Europe. COSMOS is part of the national UK DiRAC HPC Facility. It has become a vital tool for a wide group of UK researchers at more than 12 different Universities working on a variety of projects, including the search for extra-terrestrial life.

Our most dramatic successes in cosmology have come from the cosmic microwave background (CMB) radiation—the relic radiation left over from the Big Bang. Observing the CMB is like looking at a snapshot of the early universe. The Planck satellite, launched in 2009, offers the best CMB maps of the Universe, and in 2013 yielded the highest precision measurements of the cosmic parameters to date. Analysing the Planck data to test our theories is a massive task that can only be done using supercomputers, like COSMOS.

Recent analysis of CMB observations confirm predictions that a period of enormously fast exponential expansion, which cosmologists call inflation, occurred in the early universe. During inflation, very small changes, or quantum fluctuations, were imprinted into the fabric of space-time. These later became the seeds for the development of all the structures we now see in the universe. Establishing the fundamental character of these fluctuations would offer vital clues about how the universe emerged out of inflation, one of the most important goals in fundamental science. So, supercomputers like COSMOS are critical to our understanding of the earliest times in the universe.

Many supercomputers are clusters of smaller compute systems networked together, but COSMOS is a single system, like a gigantic parallel-computing PC. The distinction is important when it comes to our work. A large part of what we do is software code development. COSMOS’ flexible shared-memory architecture is ideal for this purpose. It allows our researchers to focus on innovative codes first and develop efficient parallelism in their software while proving their theories. They can go from working on their laptop to COSMOS much more easily than programming for a large, distributed system, where the parallelism of the code becomes much more critical to get their applications to work.

Xeon Phi coprocessors provide 30 X performance boost

We use both proven production codes—many of them developed on COSMOS—and new codes which are being tested and written by consortium researchers. We are porting heavily utilized production codes, such as the WALLS code, onto the Intel Xeon Phi coprocessors added to COSMOS in 2012. This porting effort onto Intel coprocessors has sped up our results considerably—it now allows us to run the WALLS code alone 30 times faster—which means discoveries can happen sooner, and we can handle bigger problems. Intel support in this area is vital to our continuing research on COSMOS.

COSMOS has proved essential for our work with the CMB, particularly the Planck satellite maps of the entire sky. The magnitude of data is manageable, but the computational effort required to extract scientific information from it is formidable. For example, when we are looking at the statistics described by the three-point correlation function, we need to add up all the contributions from all the possible triangles we can draw within the 10 million pixels in a single Planck map. Naively, this is 10^21 sets of complex operations! These calculations need to be simulated and repeated many times to test and eliminate systematic experimental effects, so brute force methods are not possible. Just to calculate the three-point correlator data required 3 million core-hours. On a single core that would take over 300 years. We needed to be able to solve it within 300 days.

Using COSMOS, we have been able to rapidly develop and implement methods to calculate the complete three-point correlator for the first time, up to a given resolution. This is a statistic that looks at “triangles in the sky”, testing whether there is a connection between sets of three different points in the Universe. Porting the computational “hot spots” in our Planck pipeline to the Intel Xeon Phi coprocessors has greatly shortened turnaround times, which will ensure we substantially improve resolution in the future. We could not begin to analyse the Planck maps, let alone previous generations of experiments, without COSMOS.

Another major project being undertaken on COSMOS is the study of spectroscopic signatures of particular molecules in exoplanet atmospheres (the EXOMOL project). These signatures can help in the identification of exoplanets and whether or not there is extra-terrestrial life there.

With COSMOS and the Intel coprocessors, researchers and programmers are continually working on optimizing our vital codes for Intel Xeon Phi, while developing new ones. Our expectation is that all our cosmological field theory codes, like WALLS, will have similarly large speed-ups when optimized and ported to Xeon Phi. We are currently transferring a larger proportion of our CMB analysis to the coprocessors, work that will continue over the next 12 months, and we are excited by the prospect of pushing forward joint two-point and three-point correlator analysis for the first time.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire