IEEE Group Seeks to Reinvent Computing as Scaling Stalls

By George Leopold

May 6, 2015

Computer scientists worried about the end of computing as we know it have been banging heads for several years looking for ways to return to the historical exponential scaling of computer performance. What is needed, say the proponents of an initiative called “Rebooting Computing,” is nothing less than a radical rethinking of how computers are designed in order to achieve the trifecta of greater performance, lower power consumption and “baking security in from the start.”

Thomas Conte, the Georgia Tech engineering professor co-chairing the Rebooting Computing crusade, said he tells his students its either the best or worst time to be studying computer science, depending on what follows Moore’s Law. The outcome of the initiative sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Computer Society will go a long way toward determining whether Conte’s students enter a dead-end field or a new Golden Age of Computing.

Moreover, the IEEE sees a critical application for whatever emerges from its overhaul of computer architectures: the emerging if ill defined Internet of Things. Hence, the effort to reboot computing could ultimately be driven by the technical challenges presented by the IoT.

That outcome could bode well for one viable approach: cloud computing. The abstraction of computing elements in the cloud may offer a way forward, said Conte. “The cloud and IoT change things,” he said in an interview. Together, “they offer a way of enabling the rebooting of computing.”

The cloud and the construct known as the Internet of Things represent more than the incremental approaches of the last decade designed mainly to squeeze the last drops of performance out of computer architectures erected on the foundation of Moore’s Law. But the end is nigh for the driving force of computing over the last several decades: “It’s a basic property of physics that you cannot make transistors too small,” Conte said, “eventually the size of the silicon atoms limit you.”

For computing, the beginning of the end came in the mid-1990s when computer architectures themselves became the limiting factor. The first trick was parallel processing, augmented by superscalar microprocessors. For a time, Conte said, this architecture delivered a doubling of computer performance for roughly the same cost every 18 months.

Eventually, the “speculative execution” of more and more instructions linked higher performance with higher power. This was unsustainable, and the beginning of the end of Moore’s Law surfaced.

Georgia Tech’s Thomas Conte is driving the IEEE’s Rebooting Computing initiative.

The response to this architectural conundrum was multiple computing cores on the same chip, or multicore. Conte argued that this stopgap fundamentally shifted the computing burden from hardware to the programmer. “Software is still brittle,” Conte asserted, and multicore turned out to be little more than a Band-Aid.

This is why the proponents of “rebooting computing” believe applications like IoT could end up driving future computer architectures rather than relying on the inherently sequential processes used by today’s computer programmers.

Then there is a growing list of emerging approaches that Conte acknowledges are considered “lunatic fringe” to the computer industry. But the rebooting computing camp is attempting to steer the conversation away from incremental steps to new ways of building computers for the next set of applications. The question is, Will applications like IoT end up driving computer architectures?

“Can we build computers in a fundamentally different way, to operate on very different algorithms and programming languages than we have today?” Conte asks.

The folks who would reboot computing following a 2014 summit in Silicon Valley. The group’s next summit will be held in December in Washington, D.C.

There is no shortage of “lunatic fringe” computer architectures. What is lacking, Conte and others assert, is the willingness to risk a fundamental overhaul in order to transform computing. It will take a public-private partnership, the IEEE group maintains. (The impetus for “rebooting computing” was a National Science Foundation initiative several years ago to revamp computer education.)

Along with the “Three Pillars” of energy efficiency, new user interfaces and “dynamic security,” the list of possible computing approaches ranges from “neuromorphic” and “approximate” computing to adiabatic, or “reversible,” computing to variations on parallelism.

Quantum computing, which has attracted much investment, shows promise, Conte agreed. “It’s going to have it’s own niche,” he explained, “its own node in the cloud. But it’s not low power.”

A more promising approach, one Conte thinks could fundamentally transform computing, is HP Labs’ “The Machine.”

The HP architecture “fuses” memory and storage, simplifies complex data hierarchies and—in a nod to the era of big data and the IoT—moves processing closer to the data. Unlike today’s computer architectures, The Machine also “bakes” security into hardware and software stacks and promises to deliver the scaling that Moore’s Law no longer can.

“What were trying to do,” Conte adds, “is find a new way of scaling across the hierarchy.”

Another possible source of computer innovation, one that would help cement the public-private partnership sought by the IEEE, is ongoing computer science research at the Defense Advanced Research Projects Agency. DARPA’s Microsystems Technology Office (MTO) spends a lot of money on device research as it searches for a replacement for silicon. But MTO Director William Chappell also stressed it also looking beyond circuit design to find new ways of representing data. Hence, the agency is placing greater emphasis on areas like algorithm development.

For the military, that translates into software-defined capabilities like being able to share scarce spectrum. In the commercial sector, those same techniques could be used to process data from the billions of connected devices and sensors that will make up the IoT.

Chappell comes at the computing problem in a way similar to the IEEE initiative: “Year after year, you start seeing the ‘free ride’ [Moore’s Law] going away.” In other words, the number of transistors keeps rising, but the ability to leverage that processing power is flattening.

Computer scaling is hitting a wall.

The defense agency, like IEEE, sees the same need to reboot computing: “Our computing systems must have the capabilities to handle this ever increasing demand in new ways, exploring new architectures, algorithms/signal processing and hardware,” it said.

The key to all of these efforts, of course, will be moving promising architectures like The Machine from the lab to the supercomputer center and, eventually, to hyper-scale datacenters. These development efforts are aimed at the goal of achieving the next big goal: exascale computing, that is, performance at 1018 calculations per second. This level of performance along with the three pillars of future computing could in turn provide a path to achieving an Internet of Things as a real computing platform rather than merely a marketing construct.

Hence, as Conte notes, the computer architecture of the future would be driven by applications, displacing the old approach in which architectural choices are made, enshrined and the resulting machines perform programs, the programs calculate numbers to a given accuracy or run one instructions after another.

Again, IEEE argues, that’s simply not sustainable in a connected world.

Other applications like weather and climate simulations also illustrate why this sequential approach to computing no longer works. Forecasters can’t predict storm tracks with the accuracy needed to avoid, for example, economic disruptions. The problem is computers and the models they use are not keeping up with the waterfall of satellite data being produced each day. Just this week, for example, the National Oceanic and Atmospheric Administration announced a cloud-based big data effort in an attempt to get its arms around the estimated 20 terabytes of observational data produced each day by U.S. weather satellites.

While chipmakers like Intel focus on selling more chips to add intelligence to IoT devices and networking companies like Cisco Systems build corporate strategies around the “Internet of Everything,” it does appear that a critical mass is emerging to fundamentally rethink how computers are designed and how they will be used in the future.

To that end, Conte said the Rebooting Computing initiative is scheduled to reconvene again at the end of this year in Washington to launch what the president of the IEEE’s Computer Society calls the start of “an earthquake in the computing industry.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire