ISC Keynote Preview: Why Mercedes-Benz Uses HPC

By Nages Sieslack

May 15, 2015

World-renowned for automotive quality and safety, Daimler’s Mercedes-Benz cars are also highly innovative. To share the inside story, Dr. Jürgen Kohler, the head of NVH CAE and Vehicle Concepts at Daimler AG, will talk about “High-Performance Computing – Highly Efficient Development – Mercedes-Benz Cars” at the opening keynote at this year’s ISC High Performance conference.

ISC: How long has Mercedes-Benz been employing high-performance computing for designing vehicles? And what motivated Daimler to turn to CAE and HPC-based simulations? 

Kohler: Mercedes-Benz first started with its simulation activities in research and development back in the 1960s. At first, programs for the industrial application of the finite element method were self-developed in-house to support, for example, the elastic-static design of the vehicle structure by computational means. Later on the company switched to the commercial FE program, NASTRAN when it was first offered on the market. There are various versions available today and we use NX NASTRAN. So with the use of more detailed models to consider all relevant design details, the access to HPC became compulsory for us. It was also equally necessary to get the analyses results back in an “acceptable” amount of time. In the past, we had to wait several days; today we are able to obtain results overnight.

ISC: How has the use of simulations changed the development and manufacturing of automobiles?

Kohler: Our so called “Digital Prototype” has been integral to the work of Mercedes-Benz Cars Development for over a decade now. The company realized early on that complex vehicle design can only be achieved through the intensive use of simulation tools in closest interaction with precise and complementary testing. Today CAE has become an indispensable part of modern development processes for us and an integral component alongside design, testing, and trials. This was undoubtedly triggered by the challenge of designing ever-more complex vehicles to a high degree of maturity over an acceptable period of time, and without the need for expensive trial phases.

ISC: How powerful are the compute clusters that Mercedes-Benz uses for vehicle development?

Kohler: The computing models are constantly getting more complex and bigger because they now also map localized details geometrically and physically. To ensure that this does not impact the turnaround times in day-to-day development work, cost-optimized high-performance computers are deployed, which can keep pace with these demands. This is why Mercedes-Benz Cars Development uses high-capacity compute clusters, consisting of a number of multi-CPU machines with sufficient RAM and capacity. For example, when simulating NVH – noise, vibration, and harshness – we can run more than 400 demanding full-vehicle jobs per day, where one run involves calculating 8,000 modes from a 30 MDOF matrix.

ISC: What could be gained from more powerful computers if vehicle developers had access to such systems?

Kohler: What could be gained are of course are more robust simulations, more optimization runs, and more detailed models. At Mercedes-Benz Car Development we ensure that our CAE engineers have access to computers which have the power needed to fulfill their analyses tasks according to the demands and the timelines of the car development processes. The computational work is mainly done on cost-optimized, high-capacity computer clusters in-house. When needed, access to external HPC capacity is available.

ISC: Is the software used for these simulations acquired from ISVs, derived from open source components, or developed in-house?

Kohler: The software tools in use are mostly commercial ones that are available on the market. For example we use LS-DYNA for crash simulations, NX NASTRAN with CDH/AMLS for NVH, STAR CCM+ for CFD or LMS Virtual Lab for chassis simulations. In general we are in close interaction with the ISVs in order to include for example new features in the codes which we need in our models to keep pace with new material technologies in short loops or to further enhance the efficiency of the code. Furthermore in the ASCS, the Automotive Simulation Center Stuttgart, we cooperate with other OEMs like Porsche and Opel in the precompetitive phase, in addition to several highly experienced ISVs, IHVs, engineering companies and partners from universities like HLRS, the High Performance Computing Center Stuttgart. Together with more than 20 partners, we develop methods, for example, for more robust crash simulations, optimization of combustion, and thermal simulation of batteries.

ISC: German engineering is quite focused on mechanical designs and mechanics. In your opinion, is this a strength or does Germany have a lesson or two to learn from Japan that relies on electronic engineering and robotics?

Kohler: In January this year, at the Consumer Electronics Show in Las Vegas, Mercedes-Benz presented its new research car “F 015 Luxury in Motion”, which drove autonomously through Las Vegas to the show hall, attracting a lot of attention from the audience. I don’t feel that we have to learn further lessons, but we have to do our jobs right to fulfill the ambitious targets we have set for ourselves for the future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire