‘ASCI’ Turns 20; David Turek Offers IBM Retrospective

By John Russell

October 21, 2015

Twenty years ago President Bill Clinton announced that the United States would maintain its U.S. nuclear arsenal without nuclear explosive testing. The challenge, of course, was how to actually carry out such a daunting task. The instruments were the tremendously successful Stockpile Stewardship Program (SSP) and Accelerated Strategic Computing Initiative which together drove much of supercomputing in the U.S. for sometime.

Today, the White House and DOE marked the anniversary with an event including comments from Secretary of State John Kerry, Secretary of Energy Ernest Moniz, and two panels featuring the directors of the three national labs involved at ASCI’s start – Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Strictly speaking, ASCI transitioned into becoming the Advanced Simulation and Computing (ASC) program in 2005 which is broadly carrying on the mission.

It’s worth noting how far supercomputing has come. Writing in 1999 on the modeling and simulation challenges ASCI faced in monitoring aging stockpiles and assessing new designs, Paul Messina, then with California Institute of Technology and DOE and now Director of Science, Argonne Leadership Computing Facility, noted:

“The goal of ASCI, however, is not a pipe dream. With funding from ASCI, the computer industry has already installed three computer systems, one at Sandia National Laboratories (built by Intel), one at Los Alamos National Laboratory (LANL) (an SGI-Cray computer), and another at Lawrence Livermore National Laboratory (LLNL) (an IBM computer), that can sustain more than 1 teraflops on real applications. At the time they were installed, each of these computers was as much as 20 times more powerful than those at the National Science Foundation (NSF) Supercomputer Centers (the Partnerships for Advanced Computational Infrastructure), the National Energy Research Supercomputing Center, and other laboratories. And this is only the beginning. By 2002, the computer industry will deliver a system 10 times more powerful than these two systems and, in between, another computer will be delivered that has three times the power of the LANL/LLNL computers. By the year 2004—only 5 years from now—computers capable of 100 trillion operations per second will be available.”[i]

Today of course, top supercomputers are petaflops machines and the new National Strategic Computing Initiative plots a course towards achieving exascale computing.

Today’s event featured remarks by: Moniz; Kerry; Deputy Secretary of Energy, Dr. Elizabeth Sherwood-Randall; NNSA Administrator, Lt. Gen. (Retired) Frank G. Klotz; NNSA Principal Deputy Administrator, Madelyn Creedon. There were also panel discussions:

  • Panel I (“From Cold War to No-Testing Regime – Challenges and Opportunities). Panel members: Charles Curtis, Senior Advisor, Center for Strategic and International Studies; Brian McKeon, Principal Deputy Undersecretary of Defense for Policy, DoD; and Franklin Miller, Principal, Scowcroft Group. Moderator:Madelyn Creedon
  • Panel II (“Assessing the Current Stockpile and Looking Forward 20 Years”). Panel members: Bill Goldstein, Director, Lawrence Livermore National Laboratory; Jill Hruby, Director, Sandia National Laboratories; and Charles McMillan, Director, Los Alamos National Laboratory. Moderator: General C. Robert Kehler (ret.), Former Commander, U.S. Strategic Command

It seems likely the timing of this event, at least in part, was intended to showcase U.S. strength in rigorous nuclear program assessment as implementation of the international Iran nuclear disarmament treaty unfolds. Indeed, Kerry’s comments were largely focused on the recent Iran deal.

dave-turek-headshotThat said, David Turek, vice president of exascale computing at IBM, posted a more personal retrospective blog around ASCI and its galvanizing effect on supercomputing and on IBM and Big Blue’s role in the program. Below is text from Turek’s blog.

What it Takes to Reinvent Supercomputing–Over and Over Again

I’m not usually a big fan of anniversaries (except my wedding day, of course), but I make an exception when it comes to IBM’s collaboration with the US Government on supercomputing.

Today is the 20th anniversary of the Accelerated Strategic Computing Initiative–a Department of Energy program that has safeguarded America’s nuclear weapon arsenal and, and the same time, helped IBM assert ongoing leadership in this most demanding of computer domains.

With help from National Laboratories scientists, teams of IBMers have produced five generations of supercomputers–repeatedly ranking among the fastest machines in the world. The journey led us to where we are today: developing a sixth generation of computers, data-centric systems designed from the ground up for the era of big data and cognitive computing.

The program was also instrumental in IBM’s rebound after the company’s near-collapse in the early 1990s.

I remember the day the original ASCI contract was signed. IBM and DOE people had gathered in a conference room at the IBM headquarters north of New York City. Unexpectedly, Lou Gerstner, IBM’s then-new CEO, popped in and gave off-the-cuff remarks. I remember him saying, “IBM is all about solving hard problems. This is the hardest problem there is. We’re all in.”

I was sitting in a chair and he was standing behind me. He put his hands on my shoulders and said, “Here’s the guy who will do it.”

Gulp.

The task of creating computers that are capable of simulating nuclear explosions so countries don’t have to test with actual bombs turned out to be difficult indeed.

The first years were the toughest.

I had been with IBM for nearly 20 years by then and had experience in both hardware and software development. Most relevantly, I had been involved in an effort to transform IBM mainframes into supercomputers. That didn’t pan out, but in the process we learned a lot about what it would take to build high-performance computers. We had relaunched our supercomputing effort with a new technology strategy just before we engaged with the Department of Energy.

To ramp up the ASCI project development team quickly, I cherry-picked people from IBM’s offices and labs all over the Hudson Valley. Some of them were green, in their 20s, but they had the nerve to rethink computing.

We made a series of radical choices. We adapted processors and systems technologies that IBM had developed for its scientific workstation business. UNIX would be the operating system. We had to invent new networking to hook all the processors together. And we were one of the first groups at IBM to use open source software. We had to move too quickly to code everything ourselves.

We also had to develop a new process for developing and manufacturing such complex systems–with thousands, and, later, millions, of processors.

With each new generation, the requirements increased dramatically. The first machines produced 3 teraflops of computing performance, or 3 trillion floating point operations per second. The current generation produces 20 petaflops; 20 quadrillion operations per second. That meant we had to invent not just individual technologies but whole new approaches to computing.

IBM_Blue_Gene_P_supercomputerFor instance, in the early 2000s, IBM Research and scientists at Lawrence Livermore National Laboratory teamed up to create a new supercomputing architecture which harnessed millions of simple, low-powered processors. The first systems based on this architecture, called Blue Gene/L, were incredibly energy efficient and exceeded the performance of Japan’s Earth Simulator by greater than a factor of 10, helping the US recapture leadership in supercomputing.

Today, we’re developing yet another generation of supercomputers for the National Laboratories. They’re based on the principle that the only way to efficiently handle today’s enormous quantities of data is to rethink computing once again. We have to bring the processing to the data rather follow the conventional approach of transmitting all of the data to central processing units.

When we first proposed this solution, we were practically laughed out of the room. But, today, data-centric computing is becoming accepted across the tech industry as the way to go forward.

Through the ASCI project, I learned lessons that I think are critical for any large-scale development project in the computer industry. First, you must assemble an integrated team of specialists in all of the hardware and software technologies. Second, you must see the big picture. Don’t think of a server computer in isolation. Plan so you can integrate servers and other components in large systems capable of taking on the most demanding computing tasks.

I guess there’s one more critical lesson I learned from this tremendous experience: recruit bright and fearless people and ask them to do nearly impossible things. Chances are, they’ll rise to the challenge.

[i] Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology: Report of a Workshop. http://www.ncbi.nlm.nih.gov/books/NBK44974/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire