Budget Request Reveals New Elements of US Exascale Program

By Tiffany Trader

February 12, 2016

A drill down into the FY2017 budget released by the Obama administration on Tuesday brings to light important information about the United States’ exascale program. As we reported in earlier coverage of the budget announcement, this is the first time that real numbers have been proposed for the National Strategic Computing Initiative (NSCI) since it was announced by executive order on July 29, 2015.

With this budget, the strategy of a coherent, connected and overarching exascale-targeted program, unified under the NSCI banner, begins to reveal itself. The budget proposes an investment of $285 million for NSCI on the DOE side and another $33 million for the NSF ledger. Beyond this $318 million sum, there are still other agencies to consider since as you’ll recall, NSCI is very strongly a multi-agency effort. In addition to the three leads — the Department of Energy (DOE), the Department of Defense (DOD), and the National Science Foundation (NSF) — there are two foundational research and development agencies (the Intelligence Advanced Research Projects Activity (IARPA) and the National Institute of Standards and Technology (NIST)); and five deployment agencies identified (the National Aeronautics and Space Administration, the Federal Bureau of Investigation, the National Institutes of Health, the Department of Homeland Security, and the National Oceanic and Atmospheric Administration). It is not clear at this point, what the full scope of funding entails.

As a DOE crosscut, exascale funding, linked to the Exascale Computing Initiative, is set to go from FY 2016 enacted levels of $252.6 million to $285 million in FY 2017, an increase of more than $32.3 million. Total Office of Science exascale investment is set to increase from $188.6 million in FY16 to $190 million in FY17; and NNSA exascale spending (under the domain of Advanced Simulation and Computing) is set to increase from $64 million to $95 million in the same period, as depicted in the chart below, extracted from the Department of Energy FY 2017 Congressional budget request.

Exascale Computing Initiative funding FY16vFY17

Very significantly, the Exascale Computing Project is also introduced by this budget. As explained in a presentation prepared by Cherry A. Murray, PhD, director of Office of Science, “ECP is initiated as a joint ASCR/NNSA partnership using DOE’s formal project management processes.” Further the budget proposes to transition the Exascale Computing Initiative to the Science Exascale Computing Project in FY17, and to satisfy this change, a new budget line was created, SC-ECP, with a proposed budget of $154 million.

ASCR FY 2017 Budget Request to Congress p8 slide

In an interview with HPCwire, Dan Reed, vice president for research and economic development at the University of Iowa and chair of the Advanced Scientific Computing Advisory Committee (ASCAC), shed light on the finer points of the budget’s exascale funding elements and clarified the distinctions between ECI, which will still go on, and ECP, which is being led by Paul Messina, senior strategic advisor of Argonne Leadership Computing Facility. “The ECP is ultimately an execution plan to deliver machines,” Reed shared, adding, “It is the whole process associated with the the deliverables. It’s not just procurement, it’s the development of the whole program.”

Reed emphasized that ECI still exists and will continue to focus on R&D issues related to exascale. “The high-level takeaway is that ECP got funded as a program line and the money that had been parked in ASCR got mostly moved into that, and both ECP and ECI are part of the DOE’s response to the NSCI,” said Reed.

Offering additional insight, Reed explained, “Before [the creation of the new line item for ECP], the place where the exascale R&D money was parked was in the math, computational and computer science part. With this change, the computing-research part of ASCR in some sense will go back to its core mission before the start of exascale which is doing basic and applied research in computer science, computational science and applied mathematics. So in some sense, that’s a return to the past.”

We learn from the Office of Science’s budget proposal that ECP will be “managed according to the project management principles of DOE Order 413.3b” and that an ECP Project Office has been established Oak Ridge National Lab.

DOE Order 413.3B refers to the “Program and Project Management for the Acquisition of Capital Assets” and it’s the process by which DOE stands up capital assets.

“Remember,” said Reed, “that DOE has a well-defined process for standing up new scientific instruments, whether that be historically things like the Advanced Photon Source at Argonne or the Spallation Neutron Source at Oak Ridge, or the heavy ion accelerators. They have a well-defined process that includes work breakdown structures, reviews, and delivery checks. That is the part that is ECP. It is a march to an operational facility. It’s not just procurement because there is obviously some magic that has to take place before that in terms of the R&D but it is driven by a focus on establishing an operational facility. That is the same process they would use to stand up any other instrument the DOE operates.”

Asked for his personal take on the likelihood of the budget getting funded, Reed said he thinks that the President’s proposed budget aligns with what expectations were. “The budget is really a placeholder, given the election process,” he said. “There’s a high-probability there will be a continuing resolution rather than a approved budget, but having said that, I think it’s very likely that the new money will appear for DOE to move forward with exascale.”

When asked for comment, Tim Polk, assistant director of Cybersecurity with the White House Office of Science and Technology Policy (OSTP), highlighted the importance of exascale computing for the maintenance of US leadership over the coming decades. “The United States must make strategic investments in High-Performance Computing to meet increasing computing demands and emerging technological challenges,” he said, noting that with the proposed $285 million in exascale computing investment at DOE and an additional $33 million in NSCI-focused programs at NSF, combined with existing HPC streams, the BRAIN initiative and other activities, “the NSCI agencies are well-positioned to advance key technologies during FY17.”

This marker of progress toward a national exascale computing program also inspired Jack Dongarra, distinguished professor of computer science in the Electrical Engineering and Computer Science Department at the University of Tennessee, to share the following commentary:

This past summer’s announcement of President Obama’s National Strategic Computing Initiative (NSCI) should usher in a national environment for scientific research that will help the Innovative Computing Laboratory to continue to thrive. Aspiring to “… create systems that can apply exaflops of computing power to exabytes of data,” the NSCI proposes to establish a coordinated, long term, multiagency strategy for improving the nation’s economic competitiveness and research prowess by raising its high performance computing and data analysis capabilities to unprecedented heights.

I remember very well the last time—more than 15 years ago—when such an ambitious federal initiative was launched because it was my long time friend and collaborator, the late Ken Kennedy, who led the President’s Information Technology Advisory Committee (PITAC) that produced the Information Technology Research: Investing in Our Future report. If the NSCI generates, over time, the same kind of national research environment that Ken’s PITAC report did, then the future prospects for Computing will indeed be bright.

The reviewed budget documents did not mention a deadline for an exascale deployment, but we know that ECI’s goal is to deploy capable exascale computing systems by 2023.

The DOE budget request reflects a trend of heightened focus on exascale computing. The word “exascale” shows up 26 times — that’s 10 more than last year. Continued funding for exascale computing is an official program highlight, with the following commentary provided as a statement of justification:

Exascale Computing: Enables U.S. leadership in the next generation of high performance computing

Since the beginning of the digital era, the U.S. Federal government has made pivotal investments in the computer industry at critical times when market progress was stagnating. We are once again at a critical turning point in high performance computing (HPC) technology, with industry innovations in hardware and software architectures driving advances in computing performance, but where the performance of application codes is suffering because the technology advances are not optimized for memory intensive, floating point HPC use. Yet the importance of HPC simulations is increasing as the U.S. faces serious and urgent economic, environmental, and national security challenges based on dynamic changes in the energy and climate systems, as well as growing security threats. Providing tools for solving these and future problems requires exascale capabilities. Committed U.S. leadership toward exascale computing is a critical contributor to our competitiveness in science, national defense, and energy innovation as well as the commercial computing market.  Equally important, a robust domestic industry contributes to our nation’s security by helping avoid unacceptable cybersecurity and computer supply chain risks.   

Addressing this national challenge requires a significant investment by the Federal government involving strong leadership from the Department and close coordination with national laboratories, industry, and academia. The Exascale Computing crosscutting initiative is organized around four pillars: application development, software technology, hardware technology, and exascale systems. In FY 2017, DOE proposes to expand its efforts in the first three technical focus areas, and begin efforts in the fourth focus area in FY 2018.  

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire