Simulating Combustion at Exascale: a Q&A with ISC Keynoter Jacqueline Chen

By Nages Sieslack, ISC Group

March 14, 2016

Dr. Jacqueline H. Chen is a distinguished member of technical staff at the Combustion Research Facility, Sandia National Laboratory in Livermore. Her primary field of research is computational combustion, which relies on high-fidelity combustion simulations to develop accurate predictive combustion models, which will be used to design more fuel-efficient, cleaner-burning vehicles, planes and power plants in the future.

The 2016 ISC High Performance conference has invited Chen to keynote on Tuesday, June 21, on the topic of advancing the science of turbulent combustion using petascale and exascale simulations. The ISC Communications team caught up with Chen to find out more about combustion simulations and thus create more awareness for her research among a broad HPC audience.

ISC: What’s the thrust of your work and research at Sandia?

Jacqueline H. Chen: I am a computational combustion scientist at the Combustion Research Facility at Sandia. My work focuses on the development and application of a first principles direct numerical simulation approach to study fundamental ‘turbulence-chemistry’ interactions. The simulations are based on simple, laboratory configurations designed to isolate and elucidate underlying phenomena that may be present in real engines for transportation and power generation. These unit problems provide both new fundamental combustion science and validation data for the development of predictive models that will ultimately be used to design future fuel-efficient, clean engines.

I also lead a DOE ASCR sponsored Exascale Co-design Center, ExaCT (http://www.exactcodesign.org), a multi-disciplinary team of computer scientists, applied mathematicians and computational combustion scientists. The mission of ExaCT is to co-design all aspects of combustion simulation including numerical algorithms for partial differential equations, programming and execution models, scientific data management and analytics for in situ uncertainty quantification and graph-based topological analysis, and architectural simulations that explore hardware tradeoffs with combustion applications.

ISC: Can you give us a sense of how combustion simulation codes have impacted commercial engine and power plant designs thus far?

Chen: Recently, Cummins has used Reynolds-Averaged Navier-Stokes (RANS) models, which solves the time-averaged equations of motion for a fluid, to design heavy duty truck engines saving 10 to 15 percent in the development time and cost at the same time making the engine 10 percent more efficient.

In the future, industry will shift towards large-eddy simulation (LES), a more accurate and computationally intensive approach which resolves the energy-containing eddies and models turbulence and combustion at finer scales where energy and heat dissipate. LES will be used to capture cycle-to-cycle variability inherent in engines – which can lead to misfire for example — which RANS has difficulty capturing. Discovery and use-inspired computational research performed on the world’s largest supercomputers, in tandem with experiment and theory, is still needed, however, to develop predictive LES models in complex combustion regimes where future engines have to operate.

ISC: What will exascale systems do for combustion simulation codes that could not be achieved with petascale systems?

Chen: Exascale systems will enable fundamental high-fidelity combustion simulations capturing a larger dynamic range of turbulence scales, operating at higher pressure, and including a larger number of combustion compounds representative of large hydrocarbons and biofuels.

It will also enable more complex multi-physics including sprays, particulates and thermal radiation to be incorporated into these simulations. These high-fidelity simulations will be carefully designed to shed light on important underlying combustion science that is currently poorly understood and inspired by real applications. These particularly apply to low-temperature ignition processes in sprays coupled with turbulent mixing at high pressure or emissions characteristics in turbulent flames propagating into auto-igniting mixtures.

The massive data generated from these simulations, combined with experiments, will be used by scientists and engineers in academia and industry to develop and test new predictive models that work in more challenging combustion regimes, which future combustors will have to operate to realize gains in efficiency and to lower emissions.

ISC: Do you foresee a significant rewrite of legacy combustion simulation codes in order to take advantage of exascale machines?  If so, who will end up doing that work?

Chen: Current petascale combustion simulation codes will have to be rewritten in order to take advantage of exascale machines. Current combustion simulation codes are written largely in a bulk synchronous programming approach which will not work at the exascale.  Driven by power constraints, and the consequent challenges in resilience, and energy costs associated with data movement, exascale combustion codes will need to be rewritten.  In response to these challenges, programming and execution models that tolerate asynchrony are needed along with new mathematical algorithms that minimize data movement and are inherently asynchronous.

Future predictive computational design tools for advanced combustion systems must be able to discern differences in physical and chemical properties of different fuels and couple that with the dynamic behavior of a combustor operating at high pressure and in highly turbulent environments. The numerical methodology needs to incorporate adaptive mesh refinement in the solution of large systems of partial differential equations with trillions of degrees of freedom to treat disparities in scales between flames and turbulence at high pressure. The core solver methodology is only one component of the required methodology. Disparity in growth rates of I/O systems and storage relative to compute throughput necessitate a full exascale workflow capability; current practice of archiving data for subsequent analysis will not be viable at the exascale. This full workflow also needs to support a wide range of in-situ analysis and uncertainty quantification methodologies.

The development of such a complex computational capability is most effectively achieved through combustion application co-design process involving an interdisciplinary team of computer scientists, applied mathematicians and computational combustion scientists. This team will work closely together to ensure that the future software stack, including new asynchrony-tolerant math algorithms for describing turbulent combustion, will work effectively on exascale hardware.

ISC: Will combustion codes have a major impact on co-design efforts? In particular, what hardware features are most important to these workloads?

Chen: Combustion codes have and continue to make a significant impact on co-design efforts across the entire stack — from mathematical algorithms for combustion simulation that reflect characteristics of future exascale architectures to asynchronous task-based programming and execution models that can adapt to node and system level non-uniformities, to numerous hardware features that support the end-to-end workflow of combustion simulations. Some of the hardware features identified through co-design that are most important to combustion workloads include larger register files, larger L1 caches for data reuse close to the processor core, fast interconnects for algebraic multigrid solvers used in low-Mach adaptive mesh refinement, software and hardware support for tasking-based programming models, and NVRAM and burst buffers to support complex and data-intensive interaction and data-exchange patterns, as well as managing data flow across complex storage hierarchies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire