The Ultimate Debate – Interconnect Offloading Versus Onloading

By Gilad Shainer, Mellanox

April 12, 2016

The high performance computing market is going through a technology transition – the Co-Design transition. As has already been discussed in many articles, this transition has emerged in order to solve the performance bottlenecks of today’s infrastructures and applications, performance bottlenecks that were created by multi-core CPUs and the existing CPU-centric system architecture.

How are multi-core CPUs the source for today’s performance bottlenecks? In order to understand that, we need to go back in time to the era of single-core CPUs. Back then, performance gains came from increases in CPU frequency and from the reduction of networking functions (network adapter and switches). Each new generation of product brought faster CPUs and lower-latency network adapters and switches, and that combination was the main performance factor. But this could not continue forever. The CPU frequency could not be increased any more due to power limitations, and instead of increasing the speed of the application process, we began using more CPU cores in parallel, thereby executing more processes at the same time. This enabled us to continue improving application performance, not by running faster, but by running more at the same time.

This new paradigm of increasing the amount of CPU cores dramatically increased the burden on the interconnect, and, moreover, changed the interconnect into the main performance enabler of the system. The key performance concern was how fast all the CPU processes could be synchronized and how fast data could be aggregated and distributed between them.

But the native interconnect latency has also reached the point of being exceedingly small compared to the overall communication patter. Today, InfiniBand switches runs at 90 nanosecond latency and InfiniBand adapters at 100 nanosecond latency. For CPU process communication frameworks, such as MPI collective communications, latency is in the range of tens of microseconds. Even if we continue to see reduction in the interconnect latency of another 10, 20, 40, or 50 nanoseconds, this is clearly negligible compared to the process communication latency. That means that the idea that has been suggested by certain companies to merge the network adapter with the CPU in order to reduce a few nanoseconds is certainly not the right thing for the future of HPC.

It is fair to ask whether this is relevant to the debate between offloading and onloading. The answer is that it is very relevant. In the past, the debate between offloading and onloading was mainly centered around CPU efficiency. An offloading interconnect technology was more complex to design and build, but in return, it offloaded the CPU from managing network activities, which could easily result in 40-50 percent better CPU and system utilization. The onloading interconnect technology is easier to build, but it is nothing more than a simple pipe, and all the network operations still must be managed and executed by the CPU; half of the CPU’s time is wasted from the point of the application. Furthermore, offloading enables technologies like RDMA, which cannot be done with an onloading approach. We have therefore witnessed numerous application performance examples that demonstrate the clear and dominant advantage of offloading solutions over onloading products (for example, DDR InfiniBand vs. Pathscale InfiniPath and QDR InfiniBand vs. QLogic/Intel TrueScale) [see i, ii, and iii].

Nowadays, the offloading architecture has become the critical element in overcoming performance bottlenecks, and it is not just a matter of performance and cost/performance comparisons. Systems cannot continue to scale unless intelligent interconnect and offloading are used.

As the number of processes continues to grow, one can increase the parallelism of solving the complex problems we deal with in science, research, and manufacturing. Therefore, the process communications become more and more critical. It is more than just the network latency of ping pong operations, but also the communication latency of complex, critical communications – collective operations or data aggregation operations. Executing these operations on the CPU/node has reach its performance limit and cannot be accelerated any further. The only solution is actually to perform these operations on the data while its moves within the cluster; that is, they are executed by the interconnect functions (switch, adapter) as the data moves. This approach, which was developed under the global architecture of Co-Design, will take us farther down the path toward exascale computing.

This technology trend will not affect only HPC, but rather will change the world of data analytics, machine learning, and other data-intensive applications and data search-based applications. The CPU core parallelism that saved the day in the mid-2000s has become the bottleneck today, and the new intelligent offloading interconnect solutions are the new saviors. Intelligent interconnect solutions are becoming the new co-processors, and they are therefore becoming a key factor for scalable computing.

Going back to basic application performance and system return on investment, it is expected that the comparison between EDR InfiniBand and Intel Omni-Path would be similar to the previous comparisons between the two different interconnect technology approaches. While only very small setups are available today, one can already see the system performance difference in various HPC application cases, for example WIEN2K, Quantum Espresso, and LS-DYNA.

WIEN2k allows users to perform electronic structure calculations of solids using density functional theory. It is an all-electron scheme including relativistic effects and has been licensed by more than 2000 user groups. Quantum Espresso is an integrated suite of Open Source computer codes for electronic structure calculations and materials modeling at the nanoscale. It is based on density functional theory, plane waves, and pseudopotentials. LS-DYNA is an advanced general-purpose multiphysics simulation software package developed by the Livermore Software Technology Corporation (LSTC). While the package continues to contain ever more possibilities for the calculation of complex, real world problems, its origins and core-competency lie in highly non-linear transient dynamic finite element analysis (FEA) using explicit time integration. LS-DYNA is used by the automotive, aerospace, construction, military, manufacturing, and bioengineering industries.

WIEN2K Performance comparison

Quantum ESPRESSO Performance comparison

LS-DYNA Performance comparison

In all three cases, we can see a clear performance advantage of the EDR InfiniBand smart network. It should be noted that the performance difference is of the entire system, ranging from 35% to 63% higher system performance with InfiniBand. It should also be noted that the system scale for these tests is small, and the gap will increase with system size.

Furthermore, as can be seen in the LS-DYNA case, for example, InfiniBand enables higher performance with only six nodes, versus Omni-Path on 12 nodes – InfiniBand delivers higher performance with half of the system size versus Omni-Path.

The system performance difference with smart offloading interconnect is clear, and the case of InfiniBand vs. Omni-Path is no different.

References

[i] http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5613096&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5613096

[ii] http://www.dynalook.com/european-conf-2007/ls-dyna-performance-and-scalability-in-the-multi.pdf

[iii] http://www.eetimes.com/document.asp?doc_id=1278292&page_number=2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire