GPU-based Deep Learning Enhances Drug Discovery Says Startup

By John Russell

May 26, 2016

Sifting the avalanche of life sciences (LS) data for insight is an interesting and important challenge. Many approaches are used with varying success. Recently, improved hardware – primarily GPU-based – and better neural networking schemes are bringing deep learning to the fore. Two recent papers report the use of deep neural networks is superior to typical machine learning (support vector machine model) in sieving LS data for drug discovery and personalized medicine purposes.

The two papers, admittedly driven by a commercial interest (Insilico Medicine), are nevertheless more evidence of deep neural network (DNN) progress in LS research where large datasets with high dimensionality have long been difficult to handle. Using DNN to train models and produce answers is proving quite effective; in these two studies both straightforward and more complicated neural network techniques were used. Snapshot:

Part of what’s interesting here is the broad applicability of the DNN approach. As the authors (listed below) note there are many in silico approaches to drug discovery and disease classification, including efforts to use transcriptional response to predict functional properties of drugs. Neural networks’ natural knack for handling high dimensional data is an important capability in LS. Deep learning has already proven very valuable in a range of activities spanning simple image recognition to physics applications.

Broadly, neural networks try to emulate the way biological neural networks operate. Artificial neural networks are generally presented as systems of interconnected “neurons” which exchange messages between each other. The connections have numeric weights that can be tuned based on experience, making neural nets adaptive to inputs and capable of learning. In essence they can be trained to understand and solve classes of problems.

For example, a neural network for handwriting recognition might be defined by a set of input neurons that are activated by the pixels of an input image. After being weighted and transformed by a function (determined by the network’s designer), the activations of these neurons are then passed on to other neurons. This process is repeated until finally, the output neuron that determines which character was read is activated.

The first study cited here relied on a standard multilayer perceptron (MLP), which is a feed forward artificial neural network model that maps sets of input data onto a set of appropriate outputs. In this instance, researchers worked with data from three cell lines (A549, MCF-7 and PC-3 cell lines from the LINCS project) that were treated with various compounds to elicit gene expression transcriptional profiles. Researchers began by classifying the compounds into therapeutic categories with DNN based solely on the transcriptional profiles. “After that we independently used both gene expression level data for “landmark genes” and pathway activation scores to train DNN classifier.” In total, the study analyzed 26,420 drug perturbation samples. Shown below is a representation of the DNN used in the drug study.

Study design: Gene expression data from LINCS Project was linked to 12 MeSH therapeutic use categories. DNN was trained separately on gene expression level data for “landmark genes” and pathway activation scores for significantly perturbed samples, forming an input layers of 977 and 271 neural nodes, respectively.
Study design: Gene expression data from LINCS Project was linked to 12 MeSH therapeutic use categories. DNN was trained separately on gene expression level data for “landmark genes” and pathway activation scores for significantly perturbed samples, forming an input layers of 977 and 271 neural nodes, respectively.

The details of the study are fascinating. Use of all the criteria was key to accuracy and the DNN effectiveness in coping with high dimensionality was a critical enabler.

In the second study, a more complicated ensemble approach proved most effective. Notably, this wasn’t a gene expression data analysis; rather it was based on blood-based markers. Data from roughly 60,000 blood samples from a single laboratory were analyzed. The five most predictive markers – albumin, glucose, alkaline phosphatase, urea, and erythrocytes – were identified. The best performing DNN achieved 81.5 percent accuracy, while the entire ensemble had 83.5 percent accuracy. The paper suggests the ensemble approach is likely most effective for integration of multimodal data and tracking of integrated biomarkers for aging.

DevBox_3qrtrOpen_wMonitorBoth studies required substantial compute power including the parallel processing capability of GPUs. NVIDIA assisted by providing early access to its DIGITS DevBox, which is a roughly 30Tflop deep learning machine featuring 4 Titan X GPU. “We also used a 2X Tesla K80 GPU system,” said Alex Zhavoronkov, an author on both papers and CEO of Insilico Medicine. “The original DNN in the molecular pharmaceutics [work] was trained on a Datalytics GPU cluster in New Mexico,” said Alex Zhavoronkov, CEO of Insilico Medicine and an author on both papers.

It bears repeating that Insilico Medicine was the main driver behind both papers and has a business interest in bolstering its credentials; that said, deep learning is a relatively small community where collaborations between academic, commercial, and technology suppliers are considerable. (For a snapshot of trends at the leading edge see HPCwire article, Beyond von Neumann, Neuromorphic Computing Steadily Advances.)

Insilico, founded in the 2014 timeframe, chose to focus on deep learning and signaling pathway activation analysis, which is an effective way to reduce dimensionality in gene expression data. “We are essentially a drug discovery engine now,” said Zhavoronkov, who has long been familiar with GPU technology having worked for several years at ATI Technologies. He’s also an ex-pat from Russia who has maintained close ties there; Insilico Medicine has grown to a staff of 39 including 22 in Moscow. Eleven are focused exclusively on deep learning.

Zhavoronkov divides the current deep learning community into three segments: one that is using off-the-shelf systems and tools; a second that is pushing the boundary and developing their own tools; and elite third components primarily focused on neural network R&D and developing new paradigms, citing Google DeepMind as one of the latter. “We fall into the middle category but also with domain expertise in drug discovery. There are few companies that have both.”

Perhaps predictably bullish, he said, “Both papers are first in class and demonstrate that deep learning can be very powerful in both drug discovery and biomarker development. In a short time we got over 800 strong hypotheses for both efficacy and toxicity of multiple drugs in many diseases.”

[i] Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data, Molecular Pharamaceutics, published by the American Chemical Society, http://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.6b00248; the manuscript is now posted on the “Just Accepted” service of the ACS. Authors listed: Alexander Aliper, Sergey Plis, Artem Artemov, Alvaro Ulloa, Polina Mamoshina, Alex Zhavoronkov

[ii] Deep biomarkers of human aging: Application of deep neural networks to biomarker development, published in the May issue of Aging (Vol 8, No5), http://www.impactaging.com/papers/v8/n5/full/100968.html. Authors listed: Evgeny Putin, Polina Mamoshina, Alexander Aliper, Mikhail Korzinkin, Alexey Moskalev, Alexey Kolosov, Alexander Ostrovskiy, Charles Cantor, Jan Vijg, and Alex Zhavoronkov

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire