Topology Can Help Us Find Patterns in Weather

By James Reinders

December 6, 2018

Topology–the study of shapes–seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns.

The Quest for Explainability

Interestingly, a key motivation for looking to topology is explainability (interpretability). One might say that, for many, the honeymoon period with “AI” (Artificial Intelligence, including machine learning) is over. Now, we hear talk of “XAI” (Explainable Artificial Intelligence). Goals for XAI expressed by researchers at DARPA (Defense Advanced Research Projects Agency) are to [1] produce more explainable models, while maintaining a high level of learning performance (prediction accuracy), and [2] enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

A goal of XAI is to enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

An XAI research area for this is called topological data analysis, and it offers us the opportunity to relate results of data analysis in terms of shapes.

Interest in Extreme Weather

Thanks to high-performance computing, weather predictions have become both more accurate and more precise (localized) in recent years. While this is true for most weather, it is far less the case for extreme weather events. It turns out that the extreme weather, such as thunderstorms, blizzards, heavy rains, dry spells, and hurricanes, are more challenging to forecast than more ordinary weather. The immediate and tangible benefits of better forecasting of extreme weather better are obvious. Additionally, there are longer-term trends to consider as well. In this vein, puzzling over the apparent supercharging of extreme weather events due to human activity is one of the youngest and most important branches of climate science.

Weather vs. Climate

Scientists speak distinctly of weather forecasts vs. climate forecasts. Today, the two types of modeling and forecasting use different mathematical modeling and computer programming. The fundamental reason for differences stem from the fact that computer resources are not unlimited in scope and speed. If we had infinitely fast computers at our command, the models for weather and climate would converge. As it is, we are very far from that, and thus weather and climate modeling are very different beasts in practice. Despite the differences in weather and climate modeling, techniques such as using topological data analysis will find a place in both weather and climate forecasting.

The concept of weather versus climate can be thought of this way: a weather forecast seeks to help us understand if it will rain on Thursday, while a climate forecast seeks to help us understand if a drought will continue for the next decade. A weather forecast for a hurricane in Central Florida should help us deploy emergency workers now, while a climate forecast for years of drought could guide planning for water rationing programs, longer-term investments in locating more sources, or reducing demand. It is not unusual for climate models to be run on supercomputers only when the computer is not being used for the first priority, which is weather forecasting. This makes sense when you consider there is no immediate risk if a climate computation takes a bit longer to run, but the timeliness of a weather forecast can be critical.

Patterns from Topological Analysis

Researchers at the University of Liverpool[1], working with researchers at Lawrence Berkeley National Laboratory, are exploring the use of topological data analysis for detecting and classifying patterns (shapes) in climate data.

A pattern of interest is that of events called atmospheric rivers. An atmospheric river is a long narrow high-moisture filament, resembling a river in many ways including their shape. They have been called “rivers in the sky.”

Given this “shape” thinking, it is not surprising that atmospheric rivers can have very different widths and lengths, but they have connectivity like a river and holes like small islands in the path of a river. We know from shapes the differences between a river and a string of unconnected lakes. Atmospheric rivers play a key role in water movement, with a strong atmospheric river having a flow seven to 15 times that of the flow at the mouth of the Mississippi River. Using topological analysis, atmospheric rivers can be identified and separated from events in the atmosphere that do not have the correct shape of an atmospheric river.

atmospheric rivers – have the shape of rivers in the sky; they can yield extreme rainfall and floods that takes away life, or normal rainfall that supports life

Atmospheric rivers that contain the largest amounts of water vapor and the strongest winds can lead to extreme rainfall and floods when they stall over watersheds vulnerable to flooding. Such events can disrupt travel, induce mudslides, and lead to catastrophic damage to life and property. Not all atmospheric rivers cause damage, the majority are simply responsible for the rain or snow that animals and plants depend upon for life.

Wet weather for Seattle: An Atmosphere River commonly called the Pineapple Express is easy to see in this image.

 

No Atmosphere Rivers in this image.
Shape tell the story: The familiar shape of a “river” jumps out in the first image, and is absent in the second image. It seems intuitive that the image with an apparent river will result in a lot of rainfall in the U.S. Pacific Northwest. The first image shows an atmospheric river (AR), this particular one is commonly called the “Pineapple Express” which is characterized by a strong flow of the moisture associated with the heavy precipitation originating from the close waters to the Hawaiian Islands. The second image is an example of a non-atmospheric river that does not form a narrow corridor of high concentrated atmospheric moisture in the atmosphere reaching the Pacific coast of North America. Both images are courtesy of NERSC@LBL — they come from an integrated water vapor (IWV, kg/m^2) product of the version 5.1 of the Community Atmosphere Model (CAM 5.1) simulated at the National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley Lab, CA, USA.

The researchers combined ideas from topological data analysis with machine learning for detecting, classifying and characterizing extreme weather events, such as certain atmospheric rivers. While these researchers were developing their techniques to analyze climate model output, it will have applicability to weather model output as well. They have successfully demonstrated this approach on the Cori supercomputer. Cori, one of the world’s dozen most powerful supercomputers, with high performance Intel multicore processors, is operated by the National Energy Research Scientific Computing Center (NERSC).[2]

Researchers have published results showing that their accuracy (up to 90%) is higher than any prior published results for detection and classification of atmospheric rivers. They applied their algorithm to climate models, using data spanning nearly four decades of weather data, including four different spatial resolutions and two different temporal resolutions. Computing on up to 480 high-performance Intel Xeon (Haswell) processor cores, their typical run times for the analysis was on the order of 10 minutes for the topological analysis followed by a few hours for the classification algorithm. Their implementation used C++ code for the topological data analysis, and Python scikit-learn for the machine learning classification algorithm known as SVM (Support Vector Machine). For the SVM, good scaling was achieved because the Intel Data Analytics Acceleration Library (DAAL) was installed to accelerate Python.

Shape of Weather to Come

We all have a vested interest in seeing climate and weather models improve, and this is especially true for extreme weather which can literally be a matter of life or death. This particular work shows that thinking in terms of shapes via topological data analysis, combined with machine learning, may provide a uniquely powerful approach for identification and analysis of extreme weather. Aside from providing a more accurate method, the use of topological data analysis might lead to better interpretability of the predictions. Whether we are considering deploying a thousand emergency workers now, or considering a multi-billion-dollar infrastructure investment, we would like to be able to get explanations from those responsible for the forecast motivating our potential actions. Humans ultimately need to be able to defend their predictions, even if they come from “artificially intelligent partners” (AI programs). Topological data analysis offers to help scientists with this challenge, and do so in the familiar language of shapes.


[1] Machine Learning and Topological Data Analysis: Application to Pattern Classification in Fluid and Climate Simulations, by Vitaliy Kurlin and Grzegorz Muszynski from the University of Liverpool, plus Michael Wehner, Karthik Kashinath, and Prabhat from Lawrence Berkeley National Laboratory, presented at the Big Data Summit.

[2] Number 10 on the TOP500.org when the work was done, now #12 as of the November 2018 list.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire