Startup Provides a New Twist on Reconfigurable Supercomputing

By Michael Feldman

November 17, 2008

The HPC community has been dabbling with Field Programmable Gate Arrays (FPGAs) for several years now, but the technology has never reached escape velocity. The attraction of reconfigurable computing has kept the supercomputing crowd dreaming, but clunky and non-standard programming environments, lack of FPGA chip real estate for 64-bit floating point operations, and I/O bandwidth limitations have inhibited their use in mainstream HPC. The common refrain of “FPGAs are the future of supercomputing and always will be” seemed destined to be a permanent joke.

Convey Hybrid CoreBut at SC08 this week, startup Convey Computer Corp. launched a new server and software stack that aims to tame FPGAs and deliver reconfigurable computing to everyday HPC users. In a nutshell, the company has developed a “hybrid core” server, the HC-1, which wraps FPGAs into a reconfigurable coprocessor that runs alongside a standard multicore x86 CPU. The CPU and coprocessor can be programmed with standard C/C++ and Fortran. Essentially, you can take legacy code, run it through the Convey compiler, and out pops an executable that runs an order of magnitude faster on a Convey box than it would on an x86 system.

Convey is brainchild of Steve Wallach, co-founder and CTO of Convex Computer, a company that developed vector supercomputers back in the 80s and 90s. (In case you were wondering, yes, Convey = Convex+1.) Since programming vector processors was a pain for users, Convex developed automatic vectorizing compilers to enable standard codes to take advantage of their machines. In 1995, the company was bought out by HP and eventually Wallach hopped on the consulting circuit, selling his computing expertise to the government and IT venture capitalists.

Steve Wallach

His idea for hybrid core computing was born out of conversations with his contemporaries at Intel and Xilinx. Wallach convinced them that he would be able to take their commodity processors and create an innovative and commercially-viable platform for HPC users. Both Intel Capital and Xilinx became investors in Convey, along with CenterPoint Ventures, InterWest Partners and Rho Ventures. The initial funding amounted to $15.1 million.

Wallach, now the chief scientist at Convey, tapped some of the Convex alumni and assembled a 28-person team to get the new company off the ground. The Convey engineers resurrected the Convex auto-vectorization model with a new twist: using FPGAs as reconfigurable acceleration engines. But the idea of insulating the developer from the hardware is the same. “Our view is that you should be able to program in standard Fortran, C and C++,” says Wallach. So no extra language keywords, extensions, or special APIs are required to extract the extra performance from the FPGA-based coprocessor. According to Wallach, “you should put the burden on the compiler to do all the heavy lifting.”

This is a departure from most other HPC accelerator-based systems, where proprietary language or runtime API extensions are needed to tap the non-CPU hardware. Environments like CUDA (for GPUs) or ImpulseC (for FPGAs) rely on extended forms of C, which means legacy code must be ported before it can be accelerated. It also means newly developed code is tied to a particular architecture or must rely on a configuration management system to maintain separate source trees. All of that translates into lost human productivity.

On the hardware side, Convey’s principle architectural innovation is tightly coupling the x86 CPU with the reconfigurable coprocessor. To accomplish this, the Convey engineers designed a server with a CPU and multi-FPGA coprocessor that share the same view of virtual memory. The x86 is used mostly for scalar logic and the coprocessor is used for vector acceleration, while taking advantage of the FPGA’s ability to be tuned to workload-specific instruction streams. Since the coprocessor implements virtual memory and cache coherence, no data has to be shuffled back and forth between the CPU and externally connected FPGAs.

Convey Hybrid Core ComputingThe way the coprocessor is reconfigured for different applications is by loading the FPGAs with a “personality,” which describe an instruction set that has been optimized for a specific workload. For example, there could be different personalities for bioinformatics, CFD, financial analytics, and seismic processing. If you had a financial analytic calculation where you wanted to see the results with different interest rates or with random numbers plugged in, your application would require double-precision function units and instructions to facilitate such operations as random number generation and exponentiation, square roots and logarithms. Other applications like seismic processing require single-precision, complex floating point instructions.

At compile-time, the developer selects a command-line switch to specify the appropriate personality for the application source. Based on the switch, the compiler extracts the parallelism from the source code by generating the personality’s extended instructions intermixed with x86 instructions, as appropriate. Prior to execution, the OS configures the FPGAs by loading the personality image corresponding to the extended instruction set.

At any one time, the coprocessor executes a single personality. In most cases, this will be sufficient for an entire application. But the FPGAs can be dynamically reconfigured during execution if an application embodies multiple types of workloads. A personality switch takes on the order of hundreds of milliseconds. The idea is that unless your application has a umm… “personality disorder,” switching occurs relatively infrequently during execution — basically during program startup or application phase changes.

There is also the ability for developers to build “procedural” personalities, which implement entire routines that are invoked like procedures or functions. To do this, a programmer will need to employ the Personality Development Kit (insert your own geek joke here) supplied by Convey.

The base hardware is a 2U rack-mountable server containing two sockets — one for an Intel CPU and one for the coprocessor. The coprocessor contains a host interface, three or four FPGA (Xilinx Virtex-5) chips, and a memory controller. The host interface encapsulates the communication with the CPU, instruction fetching and decoding, plus a common set of scalar op-codes for the coprocessor. The first version of the system will employ Intel’s front-side bus to talk to the coprocessor. But with Nehalem processors just around the corner, Convey already has plans in place for a QuickPath Interconnect-based system.

The memory controller manages a high bandwidth memory subsystem, which is incorporated into the CPU’s virtual memory space. It uses 16 DDR2 memory channels to deliver an aggregate bandwidth of 80 GB/sec. That’s a lot faster than what is currently available on an Intel Harpertown system and is even faster than what will be available on next year’s Nehalem chips. At these speeds, the controller is able to transfer individual 64-bit words (as opposed to just entire cache lines), which is how a vector processor would like to be fed.

Innovation doesn’t come cheap. An HC-1 server retail for around $32,000. But the pitch is that since an average HPC app can be accelerated 10x on this platform, each HC-1 is equivalent to 10 vanilla x86 boxes. If true that would translate to significant savings for system acquisition costs, as well as power and cooling.

UCSD is an early customer, using the HC-1 to accelerate a proteomics application, called InsPecT. Scientists there expect to achieve a 16x speedup with the new system. Pavel Pevzner, director of UCSD’s Center for Computational Mass Spectrometry, says a single rack of HC-1 servers can replace eight racks of conventional servers at the center.

How well the Convey platform performs over a range of HPC codes remains to be seen. And introducing a new company with a new architecture certainly has some risks, especially in this economy. But Wallach thinks he’s got a winner and seems undeterred about launching into a headwind. “The way you make money and be successful is to be a contrarian,” he says.

Steve Wallach will be honored at SC08 with IEEE’s Seymour Cray Award. For more about Wallach, see our in-depth interview with him in today’s issue.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire