Why Lustre Is Set to Excel in Exascale

By Brent Gorda, CEO and President, Whamcloud

June 27, 2011

File systems are a critical component of the modern supercomputing architectural model. Tying together vast numbers of compute nodes to achieve the highest computational speeds depends on a set of robust, coordinated fire hoses of data to connect the compute to the storage. Just as the computational model has gone parallel, so too has the storage.

Recent exascale plans call for a technology demonstration system in the 2015 timeframe. That system is planned for 400 petaflops peak and thus requires more data than can be delivered in a single stream. Using the aging ASC* ratios of 1000:1, 400 petaflops would require 400 terabytes/second from the file system.

To satisfy these kinds of I/O demands, should the HPC community start from scratch or build out from current file system technologies? File systems must go ultra-parallel to keep up with increasing data speed requirements, but what technical approach is best?

Evolutionary or revolutionary is the key question.

The hardware story is deja vu. With compute, the answer that worked was to boost performance on the single unit and go widely parallel. Until power limitations and massive parallelism issues get in the way, this approach is a proven strategy. With storage, for hundreds to thousands of storage units, this approach will carry the weight as well. Today, as individual scalable storage units (SSUs) accelerate toward double-digit gigabytes per second, a terabyte per second of I/O bandwidth – the stretch goal for current DOE work – is within reach.

On the software side, however, building parallel file systems has proven to be a challenge. It is widely believed that it takes ten years to mature a file system to the point it is usable in production HPC environments. That is not to say that a newcomer could not steal the show, but it does give some indication of the level of effort required to establish a new file system. By that metric it is already late in the game to start up a new file system project.

As the best example of the evolutionary path, there are multiple and significant benefits to the Lustre file system. It is open source, it is mature, it is widely used in government and academic sites, it has years of strong corporate support and it has the right architectural base from which to conduct cutting edge development.

Lustre is the market leading storage solution for HPC. It is extremely popular, especially in government and academic HPC. Lustre is implemented in about 70 of the top 100 systems in the Top 500 list (http://www.top500.org/) and many of these sites have made considerable investments into using and developing Lustre.

Being open source, Lustre has also been used extensively in the academic community as a development workbench. This has given students and researchers a unique opportunity to try out their ideas “for real” rather than relying on simulation results. When you are looking for solutions to a very large and complicated problem, you can do no better than to have a great number of academic research institutions already familiar with the technology, using it, and contributing to its growth.

HPC file system technologists generally agree that the POSIX storage API imposes fundamental obstacles to scalability and, therefore, will have to be abandoned for exascale. Any unintended contention or serialization is prohibitive at exascale and although there is disagreement on the specifics, there is general consensus that exascale file systems will be based on some sort of object store.

Since Lustre is based on an object store, it already has the right fundamental architecture for exascale. The evolution that is required is to make this object store accessible safely and tractably to applications and users. One possible approach is to introduce new file types to Lustre that will provide exascale object storage semantics internally. This will require development of the underlying object model, but it holds the promise that the same file system will be able to support the full range of applications from (legacy) POSIX through to exascale.

Finally, Lustre is both mature and stable today, which is a necessary starting point for rapid and diverse development. Lustre started as a project in 1999 and was developed by the company that created it, Cluster File Systems, until that company was acquired by Sun in 2007. After the acquisition, Sun and subsequently Oracle invested considerable money and effort in Lustre to prioritize stability and maturity. One example was that in 2008, Sun joined the Hyperion consortium created by Lawrence Livermore National Laboratory (LLNL) and made extensive use of the 1,152 node test Hyperion cluster. The results have been impressive and Lustre 1.8.5 released by Oracle is in wide and stable use throughout the world. At just over 13 years old, Lustre has indeed passed the ten-year-to-maturity metric.

The path to exascale is risky, but an evolutionary approach with Lustre, the leading open source technology, seems the best way to mitigate the risk. Starting over entails re-inventing much of the infrastructure (e.g., networking and data movement, metadata and recovery capabilities) that makes up a distributed file system and seems a needless diversion from getting to the meat of the problem.

By starting with proven, robust and mature technologies, it is possible to focus on the significant issues relating to exascale performance. What’s more, an open source solution already popular in the research community primes the research agenda to ensure the best talent is engaged and the best answers will emerge.

The end result may not contain so much of the original Lustre code base and it may not even share the same name by the time we get to exascale. But starting with Lustre gives our community the best chance of success producing the exascale file system performance, reliability and maturity that will be required by high performance computing.

—–

* In 1995, the Advanced Simulation and Computing (ASC) program was conceived to support the Department of Energy’s National Nuclear Security Administration (NNSA) mission of maintaining the country’s nuclear arsenal without the benefit of underground nuclear testing.

—–

About the author

Brent Gorda, Whamcloud CEO and President, joined Whamcloud from the US Department of Energy where he was involved in program funding and strategic adoption of the Lustre File System at the Lawrence Livermore National Laboratory and other ASCI labs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire