UCLA Selects Modular Home for Shared HPC

By Nicole Hemsoth

July 25, 2011

Purdue University made waves last year with its selection of HP’s POD containerized datacenter, which was hauled in to help them cope with a power inefficiencies stemming from an existing brick and mortar datacenter on campus.

The university set the proof point for cost and efficiency of modular datacenters, with their associate VP of Academic Technologies, John Campbell claiming that for 60% of the cost of a collocation facility the university could install a POD.

The selling point for containerized datacenters in general is that they come fully configured (although customizations can be made) with all the cables, power, cooling and racks in place and ready to roll. For Purdue, the savings mounted in the arenas of colo leasing, cutting back on staff to man datacenters, extension of on-campus networks, reduced power costs—which came, in part, because of the university’s own power plant.

UCLA announced this week that it has climbed aboard the containerized datacenter bandwagon with its head of academic technology services and managing director for the Institute of Digital Research and Education, Bill Labate, extolling the benefits of containerized HPC.

Labate’s group is responsible for providing university research cyberinfrastructure via its shared cluster system, which allows researchers who want to build their own clusters to instead buy compute nodes that Labate’s team integrates into the shared cluster. This allows the team to make the cycles available for over 170 research projects, from particle physics to genomcis and beyond.

As the need for cycles grew steadily, Labate saw a need for new equipment. He said that they had an existing datacenter that was a target for retrofitting, but when the team examined the possibility, it was clear there would be power and cooling limitations even though the space itself would have allowed room for growth. Labate’s team was able to secure $4.4 million to retrofit the existing data center, but when they received their final estimate for $7.2 million for the project, the shortfall led Labate down a different path.

Since it was not possible to scale down the potential retrofitted datacenter to remain within budget constraints, the possibilities of modular datacenters entered the picture. Labate said that to scale down to the level needed to suit the allotted funding would not have served even intermediate needs. Furthermore, since the goal of this undertaking was to enhance growth potential for the shared cluster resources, the retrofit would have been a waste of effort and money.

Labate approached UC San Diego for opinions about their experiences with a Sun-Oracle Black Box containerized solution, but found that they faced challenges with the U-shaped layout.  UCSD told him that one thing they did not like was that the Black Box required specialized equipment and brought logistical challenges when it came to replacing and maintaining hardware since entire sections needed to be pulled out for fixes. This would not suit UCLA’s needs since, again, their system of buying new hardware was based on price-performance options among vendors, thus requiring flexibility to swap components based on what individual vendors offered. Besides, the Black Box solution was only a 20-foot container, and Labate knew that he needed to be able to power more cycles than the smaller Sun-Oracle solution could provide.

Labate’s team eventually settled on HP due to its high density, which was a good fit for what they were trying to accomplish in terms of providing as many cycles as possible. Other vendors they evaluated offered attractive density but Labate said there was not enough flexibility–that they needed to be able to grow with solutions that weren’t specialized for a particular container environment.

Before choosing the high-density, 40×8 feet POD container from HP, the team also looked at options from Dell, Rackable and as noted previously, the Sun-Oracle Black Box, which Labate says was the first to be struck from the list due to the size and shape limitations. He did not go into detail about the reasons behind abandoning the Dell and Rackable solutions, other than to say that for their specific needs, density was the deciding factor. Still, he noted that there were many similarities between the HP, Dell, IBM, and Rackable solutions—the choice simply came down to price, performance, flexibility of equipment solutions, and density.

The site preparations for the container began in October 2010 and moved swiftly until ending in mid-April of 2011. This entailed extending the university’s existing chilled water, power systems and pumps, fiber networks and laying the solid foundation required to support 110,00 pounds of steel and equipment.

Many modular datacenter makers emphasize the quick installation and set-up of their containers, claiming that it can be humming away in a few short weeks. As Labate says, however, anyone who knows anything about datacenters knows that you “can’t just plunk down a datacenter in your backyard and hook into your garden hose.” All told, from site prep to shared cluster bootup the team was looking at several months.

The shared cluster is distributed across campus with one building housing around 300 nodes, another with roughly 500 and now the POD, which packs in over 1500 nodes. His team ran a wide area InfiniBand network throughout, pulling all the nodes onto the same fabric for efficient management. They connected the Ethernet network for storage  traffic, creating what he describes as a “geographic spread out single cluster.”

The team chose to keep the storage resources outside of the POD, in part to protect the valuable applications and results of long runs, but also because the POD has been optimized for compute nodes according to his team’s purpose to deliver shared cluster resources as if it was a single system. He emphasized repeatedly that their needs are specific—they wanted to be able to maximize the number of cycles available for university research.

When asked about usability or performance tradeoffs, Labate was adamant that containers are more efficient and perform for their needs, which again, are focused on providing more compute for the shared HPC cluster. He said that in many ways, the container streamlines their HPC operations by shedding the maintenance and efficiency hassles of brick and mortar. As he noted, “there are no other people in the POD, in fact, we limit our time in there since we want to keep it buttoned up as tight as possible. It’s been freeing, no operators in the pod, no need for anyone to sit in there and monitor—it’s all automated with all the tools we need for monitoring, powering on and off and so forth.”

According to Labate, there were no power and energy consumption problems with their use of POD. He said that compared to one of their brick and mortar datacenters which was operating at 1.5 PUE, the POD was running a steady 1.17 PUE. He claims that this translates into roughly a $200,000 difference in power costs, which represented a secondary but very important consideration as they looked at the POD capabilities.

Despite the lack of wide user adoption of modular datacenters, it was nearly impossible to get Labate to remark on any drawbacks to such solutions. He said that outside of the obvious negative factors, which include working inside small boxes with 36 raging blowers and tight quarters (which his team overcomes by saving fixes inside for once-weekly missions) and the aesthetic problem of having an giant, ugly shipping container fitting in with an artful sense of campus uniformity (an issue he said gave the campus aesthetics folk a few gripes) he can’t imagine traditional datacenters to address growth ever again.

When pressed about what he might warn others about when considering such solutions, Labate said environmental conditions were critical. First, in terms of making sure it is possible to locate the container close to needed power and cooling resources. Also, in terms of actually environment—he said that during a recent conversation with someone in an snow-bound region, he suggested that to avoid preventing access to the container they might need to consider building enclosures or renting indoor space.

Snow might not be a problem for UCLA, but earthquakes certainly are. Labate said this is another important distinction between brick and mortar and containers—while he notes he hasn’t researched his hunch, these massive, solid steel, windowless shipping containers were far likely more structurally sound than any existing traditional datacenter on his campus. Let’s hope he never gets a chance to prove that theory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire