Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

By Gary Johnson

February 2, 2012

In the world of high performance computing, there are three distinct metrics in play: number crunching speed; data crunching speed; and energy efficiency. Can a computer excel at all three, or is our best recourse to try for something less than a hat trick?

An abundance of metrics

In the past, number crunching ruled HPC. The measure was LINPACK, the metric was FLOPS (floating point operations per second) and the list was the TOP500.  Currently, data crunching has soared in importance and visibility and is arguably on par with number crunching. The measure here is an evolving set of kernels from graph algorithms, the metric is TEPS (traversed edges per second) and the list is the Graph 500

Simultaneously, the previously unconstrained race to the top is being supplanted by a new form of competition – one constrained by electrical power. Hence the Green500 list. Here, the measure is energy efficiency and the metric is MFLOPS/watt. 

The explicit constraint, introduced as a design goal for an exaflop computer, is one exaflop/20 MW or 50 gigaflops per watt. The computer currently at the top of the Green500 list operates at slightly over two gigaflops per watt. So, the 20 MW design goal is quite ambitious. However, it has now brought energy efficiency to the forefront of HPC. It’s not just for tree huggers anymore.

Loneliness at the top

The top of each of these lists is a lonely place and an expensive one to inhabit. Most machines will never attain it, but this is the realm where a lot of innovation happens. If only a few machines can reach the summit, then one probably can’t afford to have them be highly effective on only a small set of applications.  The cost is simply too great. Other opportunities for research investments would probably outcompete a narrowly targeted machine.

So it seems that at the top end of HPC, we are now seeking energy efficient computers that perform well at both number and data crunching. Can we get all three? Let’s take a look at the current state of the art.

Graph-Top-Green 500 list comparisons

The current version of the TOP500 list cites energy efficiencies for a large number of its entries, while the Green500 list provides energy efficiencies for all of its entries. Meanwhile, the Graph 500 list is still very much a work in progress. The current version contains only 49 distinct computers and does not provide any mapping of these to either the TOP500 or the Green500 list. Nonetheless, it is possible to locate at least 19 Graph 500 computers on the other two lists. So we can make at least a partial comparison of these lists, the results of which are shown below.

The machine nicknames used are self-explanatory, except possibly for “NSQP2” which refers to the NNSA-Office of Science BlueGene/Q Prototype II. The machines are listed in the order of their average ranking across all three lists.

Some obvious conclusions may be drawn:

  • Tsubame is the clear overall winner.
  • A couple of machines show a reasonable balance over all three metrics – Tsubame and Gordon
  • If one picks Top & Green, Tsubame and Gordon are still the best.
  • For Graph & Green, NSQP2 wins, Tsubame is a close second, and Endeavor-W, Endeavor-S and Gordon look pretty good.
  • For the choice Graph & Top, there are surprisingly many good choices, including: Tsubame, Hopper, Intrepid, Jaguar, Jaguar PF, Kraken, Kraken-F, Lomonosov, Franklin, Lonestar and Red Sky.

The top five of the TOP500

Note that three of the top five TOP500 computers are missing from the comparison: K Computer (#1); Tianhe-1A (#2); and Nebulae (#4). This is because they’re not currently included in the Graph 500 list.  Jaguar (#3) and Tsubame (#5) are present. If the missing machines are added, the comparison looks like this:

The only comparison now possible is Top & Green.  As is shown above, Tsubame still wins. However the three new entries all score higher than Gordon.

Can one machine have it all?

Based on the limited sampling used here, it appears that the answer is yes. Tsubame is leading the way.  Kudos to Prof. Satoshi Matsuoka and his team at the Tokyo Institute of Technology’s Global Scientific Information and Computing Center (GSIC). It will be interesting to see if this conclusion remains true as we move along the path to exascale.

Secret sauce

Those curious about Tsubame’s secret sauce may consult the Tsubame2 System Architecture information on the GSIC website. Here’s a brief extract:

TSUBAME2 is a production supercomputer operated by Global Scientific Information and Computing Center (GSIC), Tokyo Institute of Technology in cooperation with our industrial partners, including NEC, HP, NVIDIA, Microsoft, Voltaire among others. Since Fall 2010, it has been one of the fastest and greenest supercomputers in the world, boasting 2.4 PFlops peak performance by aggressive GPU acceleration, which allows scientists to enjoy significantly faster, larger computing than ever. This is the second instantiation of our TSUBAME-series supercomputers with the first being, as you might guess, TSUBAME1. It also employed various cutting-edge HPC acceleration technologies, such as ClearSpeed and NVIDIA GPUs, where we had learned many important technical lessons that eventually played a crucial role in designing and constructing our latest supercomputer. Compared to its predecessor, TSUBAME2, while keeping its power consumption nearly the same as before, achieves 30x performance boost by inheriting and further enhancing the successful architectural designs.

Key architectural points cited are:

  • Extended usage of GPU accelerators
  • Much improved intra- and inter-node bandwidths
  • Petascale high-bandwidth shared storage
  • Ultra-fast local storage (SSD)

What about number Crunching versus data crunching?

Another noteworthy observation from the Graph & Top comparisons is that there are quite a few computers that seem reasonably well balanced for a mix of both number crunching and data crunching tasks. The conventional wisdom is that number crunching and data crunching take advantage of significantly different computer attributes and that a single computer architecture may not work well for both kinds of tasks.  The limited sampling used here appears to contradict that view.

Caveats

As previously mentioned, the Graph 500 list is a work in progress. As it matures and as the list expands to encompass more machines, the conclusions presented here could change.

In the comparisons made here, equal weight has been given to the importance of placement on each of the lists. If one assigns different weights, the conclusions may change. However, it appears that any “reasonable” set of weightings would yield substantially the same conclusions.

—–

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire