The Processors of Petascale

By Michael Feldman

April 10, 2012

While the supercomputing digerati argue about what an exascale machine will look like at the end of this decade, recent history suggests that there will be a healthy diversity of designs, at least with regard to processor architecture. As of this week, there are 20 known petascale systems deployed, which in aggregate encompass five different varieties of microprocessors. And that level of diversity shows no signs of reversing itself.

Of the 20 petascale supercomputers up and running today, eight use x86 CPUs (AMD Opterons or Intel Xeons) exclusively; seven employ an x86/GPU combo; two are based on Fujitsu’s SPARC64 CPUs; one uses the Chinese ShenWei SW1600 processor; one is powered by IBM’s PowerPC 450 CPU, and the final system uses the PowerXCell 8i alongside AMD x86 CPUs.

Below are the current systems that have achieved at least one petaflop of peak performance. Not all of these are on the latest TOP500 list since a number of them were installed or upgraded since the rankings were updated in November 2011.

System Country Processor Interconnect Petaflops
K Computer  Japan  Fujitsu SPARC64  Tofu  11.28
 Tianhe-1A  China  Intel x86/NVIDIA GPU  Galaxy  4.70
 Nebulae  China  Intel x86/NVIDIA GPU  InfiniBand  2.98
 Jaguar  US  AMD x86  Gemini  2.33
 TSUBAME 2  Japan  Intel x86/NVIDIA GPU  InfiniBand  2.29
 CURIE  France  Intel x86/NVIDIA GPU  InfiniBand  2.00
 Helios  Japan  Intel x86  InfiniBand  1.50
 Roadrunner  US  AMD x86/PowerXCell  InfiniBand  1.37
Lomonosov  Russia  Intel x86/NVIDIA GPU  InfiniBand  1.37
 Cielo  US  AMD x86  Gemini  1.36
 Tianhe-1A Hunan  China  Intel x86/NVIDIA GPU  Galaxy  1.34
 Pleiades  US  Intel x86  InfiniBand  1.32
 Hopper  US  AMD x86  Gemini  1.29
 Tera-100  France  Intel x86  InfiniBand  1.25
 Kraken  US  AMD x86  SeaStar  1.17
 Oakleaf-FX  Japan  Fujitsu SPARC64  Tofu  1.13
Sunway Blue Light  ChinaChina  ShenWei SW1600  InfiniBand  1.07
 HERMIT  Germany  AMD x86  Gemini  1.04
 Mole 8.5  China  Intel x86/NVIDIA GPU  InfiniBand  1.01
 JUGENE  Germany  PowerPC 450  Custom  1.00

As you can see, more than a third of the current petascale supers rely solely on x86 CPUs, either AMD Opterons or Intel Xeons. But the x86/GPU combo systems are nearly as numerous. In fact, since the Opteron-only Jaguar system at Oak Ridge National Lab is now being transformed into the x86/GPU Titan machine, this hybrid arrangement is becoming the most popular configuration. It’s notable that half of the x86/GPU petaflop machines are currently deployed in China.

The fastest x86 CPUs (in this case, the top-end 8-core Sandy Bridge Xeons) can deliver around 160 gigaflops, while consuming 130 to 135 watts. On the other hand, NVIDIA’s top-of-the line Tesla part (the M2090) can hit 665 gigaflops, while consuming 225 watts. Although harder to program than CPUs, the superior performance and performance/watt of GPUs is driving the rapid adoption of these graphics processors in high performance computing.

The newest petascale system is the Oakleaf-FX, a Fujitsu supercomputer based on its PRIMEHPC FX10 servers. That machine was just completed last week for the University of Tokyo. Kyushu University has ordered a system with PRIMEHPC FX10 servers as well, although in this case, it’s a sub-petascale machine (691 teraflops) and gets three-quarters of its flops from adjoining x86-based PRIMERGY CX400 nodes.

Oakleaf-FX represents the first supercomputer installed with Fujitsu’s newest SPARC64 IXfx CPUs. Its precursor, the SPARC64 VIIIfx, powers RIKEN’s 10-plus petaflop K Computer, which is currently the reigning champ on the TOP500. The SPARC64 VIIIfx is an 8-core chip and at 2.00 GHz delivers 128 gigaflops, while the newer SPARC64 IXfx, at 1.85 GHz contains 16 cores and delivers 236.5 peak gigaflops. Fujitsu says a PRIMEHPC FX10 cluster can scale up to 23.2 petaflops, which would entail a system with about 100 thousand of these CPUs.

Fujitsu’s SPARC64 fx series chips were specifically designed with HPC in mind, something they have in common with the Chinese ShenWei SW1600 processor that was developed at the Jiangnán Computing Research Lab. Like the SPARC64 IXfx, the SW1600 is a 16-core RISC processor, although it runs quite a bit slower that its Japanese counterpart. At 1 GHz, the Chinese chip delivers around 140 gigaflops.

The only system currently deployed with SW1600 silicon (that we know of) is the Sunway Blue Light, a one-petaflop machine that is housed at the National Supercomputing Center in Jinan. Announced in October 2011, the Sunway machine represents the first Chinese supercomputer built with domestically designed processors

There is currently only a single petascale Blue Gene supercomputer in the field, JUGENE, a one-petaflop Blue Gene/P system at Forschungszentrum Jülich that is powered by more than 73,000 PowerPC 450 CPUs. The PowerPC architecture, which has its roots in the embedded computing space, was chosen mainly for its energy efficient performance. At 850 MHz, the chip delivers a modest 13.6 gigaflops, but draws only around 25 watts of power.

The odd one out is the PowerXCell 8i, a Cell processor variant IBM designed for HPC duty. The PowerXCell 8i debuted in the world’s first petaflop system, Roadrunner, which was booted up in 2008. That system employed the processor as an accelerator alongside AMD Opteron CPUs, using IBM’s QS22 blade server. Each PowerXCell 8i consists of a Power Processing Element and eight Synergistic Processing Elements (SPEs) that together deliver 102.4 gigaflops — a whopping amount for a 2008-era processor.

Unfortunately for IBM, GPU computing was coming onto the scene just as the PowerXCell 8i was debuting. Thanks to a concerted effort by NVIDIA to build GPU accelerators for HPC, not to mention a more favorable business model for graphics processors, IBM decided to abandon any follow-up to the PowerXCell 8i (At one point IBM was said to have a 32-SPE PowerXCell on the drawing board.) Roadrunner would be the first and last Cell processor-based supercomputer.

Even though the PowerXCell design died an untimely death, there are some new processors on the horizon to takes its place. The most well known is Intel’s Many Integrated Core (MIC) chip, a manycore x86 architecture based on the “Larrabee” prototype. The first implementation, known as Knights Corner, is expected to deliver more than a teraflop of double precision floating point performance when its introduced in late 2012 or early 2013.

The Stampede supercomputer, which will be installed at the Texas Advanced Computing Center (TACC) later this year, will use Knights Corner and Xeon parts as the computational foundation. That system is expected to top 10 petaflops when it officially goes into production in early 2013.

Later this year two multi-petaflop Blue Gene/Q supercomputers, powered by the new Power A2 CPUs, will be brought online. Sequoia, a 20-petaflop supercomputer, will be installed at Lawrence Livermore National Lab, and Mira, a 10-petaflop machine will go to Argonne. Both are expected to go into production before the end of the year. UK’s Daresbury Laboratory is also in line for a petaflop-plus Blue Gene/Q system, although the deployment date has not been set.

A derivative of the PowerPC architecture that was the basis of the Blue Gene/L and Blue Gene/P ASICs, the Power A2 is a much more powerful chip. Instead of the measly 4 cores of the PowerPC 450, the new silicon houses 18 cores — 16 for the application, 1 for the OS, and a spare. And even at a modest 55 watts (1.5 GHz), the Power A2 delivers 204.8 gigaflops. Thanks to the chip’s exceptional energy efficiency, Blue Gene/Q systems are currently the number 1 and 2 systems on the latest Green500 list, although both of these are sub-petaflop machines.

Other petascale supercomputers expected to show up in 2012 include the aforementioned Titan at Oak Ridge (10 to 20 petaflops), Blue Waters at NCSA ( 11.5 petaflops), the SuperMUC system at Leibniz Supercomputer Center (3 petaflops). The first two will use the x86/GPU hybrid configuration using Opteron CPUs and the upcoming NVIDIA Kepler GPUs. SuperMUC is all x86 Xeons.

The Chinese designed Godson-3C processor is also expected to eventually show up in some petascale systems, although not this year. The 16-core chip is said to deliver 512 gigaflops and is slated to launch sometime in 2013. According to Godson processor lead designer Weiwu Hu, the 3C chips will be used to power a petascale supercomputer build by Dawning (now Sugon).

There is also the FeiTeng processor, which is being developed by China’s National University of Defense Technology. Although no petascale systems based the these chips have been announced, it offers China yet another option for building native supercomputers in the future.

So what does this mean for exascale? If history repeats itself, the first such systems will be powered by exotic processors, but eventually more commodity-based silicon will take over. Power consumption is the biggest constraint for large supercomputers now, so we may very well see other processor architectures like ARM come to the fore. And with the Chinese developing their own stable of HPC processors, the whole supercomputing game could change before the end of the decade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire