Titan Sets High Water Mark for GPU Supercomputing

By Michael Feldman

October 29, 2012

Oak Ridge National Laboratory (ORNL) has officially launched its much-anticipated Titan supercomputer, a Cray XK7 machine that will challenge IBM’s Sequoia for petaflop supremacy. With Titan, ORNL gets a system that is 10 times as powerful as Jaguar, the lab’s previous top system upon which the new machine is based. With a reported 27 peak petaflops, Titan now represents the most powerful number-cruncher in the world.

The 10-fold performance leap from Jaguar to Titan is courtesy of NVIDIA’s brand new K20 processors – the Kepler GPU that will be formally released sometime before the end of the year. Although the Titan upgrade also includes AMD’s latest 16-core Opteron CPUs, the lion’s share of the FLOPS will be derived from the NVIDIA chips.

In the conversion from Jaguar, a Cray XT5, ORNL essentially gutted the existing 200 cabinets and retrofitted them with nearly ten thousand XK7 blades. Each blade houses two nodes and each one of them holds a 16-core Opteron 6274 CPU and a Tesla K20 GPU module. The x86 Opteron chips run at a respectable 2.2 GHz, while the K20 hums along at a more leisurely 732 MHz. But because to the highly parallel nature of the GPU architecture, the K20 delivers around 10 times the FLOPS as its CPU companion. (Using the 27 peak PF value for Titan, a back-of-the-envelope calculation puts the new K20 at about 1.2-1.3 double precision teraflops.)

Thanks to the energy efficiency of the K20, which NVIDIA claims is going to three times as efficient its previous-generation Fermi GPU, Titan draws a mere 12.7 MW to power the whole system. That’s especially impressive when you consider that the x86-only Jaguar required 7 megawatts for a mere tenth of the FLOPS.

It would appear, though, that IBM’s Blue Gene/Q may retain the crown for energy-efficient supercomputing. The Sequoia system at Lawrence Livermore Lab draws just 7.9 MW to power its 20 peak petaflops. However, it’s a little bit of apples and oranges here. That 7.9 MW is actually the power draw for Sequoia’s Linpack run, which topped out at 16 petaflops. Since we don’t have the Linpack results for Titan just yet, it’s hard to tell if the GPU super will be able to come out ahead of Blue Gene/Q platform.

For multi-petaflopper, Titan is a little shy on memory capacity, claiming just 710 terabytes – 598 TB on the CPU side and 112 TB for the GPUs. The FLOPS-similar Sequoia has more than twice that – nearly 1.6 petabytes. Back in the day, the goal for balanced supercomputing was at least one byte of memory for every FLOP, but that era is long gone.

Titan provides around 1/40 of a byte per FLOP and from the GPU’s point of view, most of the memory on the wrong side of the PCIe bus – that is, next to the CPU. Welcome to the new normal.

Titan is more generous with disk space though, 13.6 PB in all, although again, a good deal less than that of its Sequoia cousin at 55 PB. Apparently disk storage is being managed by 192 Dell I/O servers, which, in aggregate, provide 240 GB/second of bandwidth to the storage arrays.
Titan’s big claim to fame is that it’s the first GPU-accelerated supercomputer in the world that’s has been scaled into the multi-petaflop realm. IBM’s Blue Gene/Q and Fujitsu’s K computer — both powered by custom CPU SoCs — are the only other platforms that have broken the 10-petaflop mark. Titan is also the first GPU-equipped machine of any size in the US. As such, it will provide a test platform for a lot of big science codes that have yet to take advantage of accelerators at scale.

Acceptance testing is already underway at Oak Ridge and users are in the process of porting and testing a variety of DOE-type science applications to the CPU-GPU supercomputer. These include codes in climate modeling (CAM-SE), biofuels (LAMMPS), astrophysics (NRDF), combustion (S3D), material science (WL-LSMS), and nuclear energy (Denovo).

According to Markus Eisenbach, his team has already been able to run the WL-LSMS code above the 10-petaflop mark on Titan. He says that level of performance will allow them to study the behavior of materials at temperatures above the point where they lose their magnetic properties.

At the National Center for Atmospheric Research (NCAR), they are already using the new system to speed atmospheric modeling codes. With Titan, Warren Washington’s NCAR team has been able to execute high-resolution models representing one to five years of simulations in just one computing day. On Jaguar, a computing day yielded only three months worth of simulations.

ORNL’s Tom Evans is using Titan cycles to model nuclear energy production. The simulations are for the purpose of improving the safety and performance of the reactors, while reducing the amount of waste. According to Evans, they’ve been able to run 3D simulations of a nuclear reactor core in hours, rather than weeks.

The machine will figure prominently into the upcoming INCITE awards. INCITE, which stands for Innovative and Novel Computation Impact on Theory of Experiment, is the DOE’s way of sharing with  the FLOPS with scientists and industrial users on the agency’s fastest machines. The program only accepts proposals for end users with “grand challenge”-type problems worthy of top tier supercomputing.

With its 20-plus-petaflop credentials, Titan will be far and away the most powerful system available for open science. (Sequoia belongs to the NNSA and spends most its cycles on classified nuclear weapons codes.) The DOE has received a record number of proposals for the machine, representing three times what Titan will be able to donate to the INCITE program.

Undoubtedly some of that pent-up demand is a result of the delayed entry of the US into GPU-accelerated supers. Over the past three years, American scientists and engineers have watched heterogeneous petascale systems being built overseas. China (with Tianhe-1A, Nebulae, and Mole 8.5), Japan (with TSUBAME 2.0), and even Russia (with Lomonosov) all managed to deploy ahead of the US.

Some of that is due to the slow uptake of GPU computing by IBM and Cray, the US government’s two largest providers of top tier HPC machinery. IBM offers GPU-accelerated gear on it x86 cluster offerings, but its flagship supercomputers are based on their in-house Blue Gene and Power franchises. Cray waited until May 2011 to deliver its first GPU-CPU platform, the XK6 (with Fermi Tesla GPUs), preferring to skip the earlier renditions of NVIDIA technology.

While Titan could be viewed as just another big supercomputer, there is a lot on the line here, especially for NVIDIA. If the system can be a productive petascale machine, it will go a long way toward establishing the company’s GPU computing architecture as the go-to accelerator technology for the path to exascale. The development that makes this less than assured is the imminent emergence of Intel’s Xeon Phi manycore coprocessor, and to a lesser extent, AMD’s future GPU and APU platforms.

Intel will get its initial chance to prove Xeon Phi’s worth as an HPC accelerator with Stampede, a 10 petaflop supercomputer that will be installed at the Texas Advanced Computing Center (TACC) before the end of the year. That Dell cluster will have 8 of those 10 petaflops delivered by Xeon Phi silicon and, as such, the system will represent the first big test case for Intel’s version of accelerated supercomputing.

It also represents the first credible challenge to NVIDIA on this front since the GPU-maker got into the HPC business in 2006. Whichever company is more successful at delivering HPC on a chip, the big winners will be the users themselves, who will soon have two vendors offering accelerator cards with over a teraflop of double precision performance. At a few thousand dollars per teraflop, supercomputing has never been so accessible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire