The Week in HPC Research – 04/18/2013

By Tiffany Trader

April 18, 2013

We’ve scoured the journals and conference proceedings to bring you the top research stories of the week. This diverse set of items includes the remarkable mechanics of bone structure; details about UCSD’s Research CyberInfrastructure (RCI) Program; an efficient approach for Monte Carlo integration on GPUs; an implementation of the lattice Boltzmann method on GPU clusters; and a cloud computing programming model that focuses on predictable performance.

Understanding Bone’s Resilience

A marvel of evolution, bone structure is remarkably strong and resilient, thanks to a combination of collagen (a soft, flexible biomolecule) and the mineral hydroxyapatite (which provides support). The exact pairing of these two substances has long evaded researchers, until now. Recently a team of scientists from MIT revealed how the two materials combine to form a structure that is “simultaneously hard, tough and slightly flexible.”

Using a supercomputer, the researchers were able to model bone structure down to the atomic level to determine its basic building blocks. What they saw was fibers of collagen, strengthened with hydroxyapatite crystals. To determine the accuracy of their model, they compared the results with prior studies of real bone. They also carried out tests on their virtual fibers with different levels of collagen versus mineral, to assess the impact of stress and strain. The tests showed that the mineral crystals were able to withstand four times more stress than the collagen matrix.

“In this arrangement of tiny hydroxyapatite grains embedded in the collagen matrix, the two materials can each contribute the best of their properties. Hydroxyapatite takes most of the forces in the material, whereas collagen takes most of the stretching,” explained Mark Buehler, the project’s lead scientist, an associate professor of civil and environmental engineering (CEE) at MIT.

Thanks to recent advances in supercomputing, modeling work that would have taken years of compute time even a few years ago was completed in just months. The research could lead to a better understanding of brittle bone diseases like osteoporosis. The next step, according to Buehler, is to recreate bone-like materials in lab.

The findings were published this week in the journal Nature Communications.

Next >> UCSD’s RCI Program

UCSD’s Research CyberInfrastructure (RCI) Program

UC San Diego established its Research CyberInfrastructure (RCI) Program in 2009 to support the scientific research activities of its campus. Earlier this month, Richard Moore, Deputy Director of the San Diego Supercomputer Center, discussed the program’s progress at the 5th Annual University of Massachusetts and New England Area Librarian e-Science Symposium in Shrewsbury, Mass.

In his address titled “UCSD’s Research CyberInfrastructure (RCI) Program: Enabling Research Thru Shared Services,” Moore presented an overview of the work the Research CyberInfrastructure (RCI) Program is doing to support researchers at the University of California San Diego.

The integrated cyberinsfrastructure includes datacenter colocation, networking, centralized storage, data curation, research computing, as well as technical expertise. Moore says the program will:

  • Increase competitiveness of UCSD researchers.
  • Realize cost efficiencies and improve service via economies of scale and shared services.
  • Preserve UCSD’s digital intellectual property.
  • Save energy/$ and effectively use datacenter capital investments (colocation)

In order to better serve its research community, UCSD undertook a survey of the campus’s principal investigators (PIs). Moore provides a peek at some of the noteworthy findings of the soon-to-be-published report.

The interviews were undertaken with a broad sample of approximately 50 representative PIs. Asked where their data was coming from, the responses showed that about 50 percent was from campus instruments, 30 percent from simulations, 20 percent from field instruments, with roughly 15 percent resulting from other external sources. The percentages reflect the number of PIs not the amount of data and since individual PIs use multiple solutions, percentages total more than 100 percent.

A significant finding was the importance of stability and long-term planning. Responses show real interest in user adoption, but only if there is a strong commitment on the campus side that includes keeping prices down for a definite period of time. The survey also reflects the need for a high performance and sustainable storage service.

Next >> Monte Carlo Integration of GPUs

Monte Carlo Integration on GPUs

Researchers Rida Assaf and Dr. E. de Doncker from the College of Engineering and Applied Sciences at Western Michigan University (WMU) are exploring an efficient approach for Monte Carlo integration on GPUs.

As Assaf explains, Monte Carlo simulations are employed in many fields, including computer-aided design (e.g., automotive safety), finite elements (using tessellations), molecular modeling, particle physics, finance (cash flow, mortgage obligations), psychology/biometrics (e.g. analysis of taste testing), and statistics.

Their experiment employed the NVIDIA Tesla M2090 GPU card, which enables 665 gigaflops peak double-precision floating point performance, or 1,331 gigaflops peak single precision. Each card has 512 CUDA cores, 6 GB of GDDR5 memory and a memory bandwidth of 177 GB/sec (with error-correcting turned off).

The team leveraged the GPUs for several DICE functions, often used in nuclear physics for modeling the behavior of particle interactions. They found that the program achieved speedups of up to 181 compared to sequential execution, tested on different functions.

In the future, the researchers plan to take on multicore and distributed computations using the cluster at the High Performance Computational Science Laboratory (HPCS), Department of Computer Science at WMU.

Next >> LBM for GPU Clusters

LBM for GPU Clusters

The lattice Boltzmann method (LBM) holds tremendous promise for the challenging discipline of computational fluid dynamics. It reduces to a regular data parallel procedure making it a good fit for high performance computations. While there have been many efficient implementations of the lattice Boltzmann method for the GPU, there has not been as much work done with multi-GPU and GPU cluster implementations. However, GPU LBM solvers that can perform large scale simulations will be a big boon to researchers. So say a group of French researchers, who for these reasons, decided to undertake an MPI-CUDA implementation of the lattice Boltzmann method.

They’ve written a paper in the Parallel Computing journal describing an efficient LBM implementation for CUDA GPU clusters. They note that their “solver consists of a set of MPI communication routines and a CUDA kernel specifically designed to handle three-dimensional partitioning of the computation domain.” The performance and measurement work were carried out on a cluster using up to 24 GPUs. The final analysis showed that peak performance as well as weak and strong scalability are satisfactory, “both in terms of data throughput and parallelisation efficiency.”

Fig. 6. Communication phase — shape The upper part of the graph outlines the path followed by data leaving the sub-domain handled by GPU 0. For each face of the sub-domain, the out-going densities are written by the GPU to pinned buffers in host memory. The associated MPI process then copies the relevant densities into the edge buffers and sends both face and edge buffers to the corresponding MPI processes. The lower part of the graph describes the path followed by data entering the sub-domain handled by GPU 1. Once the reception of in-coming densities for faces and edges is completed, the associated MPI process copies the relevant data for each face of the sub-domain into pinned host memory buffers, which are read by the GPU during kernel execution. Source.

Next >> Cloud Programming Model

Cloud Programming for Predictable Performance

The International Journal of Grid and Distributed Computing includes an interesting study, titled “BSPCloud: A Hybrid Distributed-memory and Shared-memory Programming Model.”

A group of researchers from Shanghai University and China Telecom Corporation Ltd. write that “current programming models for cloud computing mainly focus on improving the efficiency of the cloud computing platforms but little has been done on the performance predictability of models.” In light of this, they are investigating a new programming model for cloud computing, called BSPCloud, that leverages multicore architectures while also providing predictable performance.

The team explain that “BSPCloud uses a hybrid of distributed-memory and shared-memory bulk synchronous parallel (BSP) programming model. Computing tasks are first divided into a set of coarse granularity bulks which are computed by the distributed-memory BSP model, and each coarse granularity bulk is further divided into a set of bulk threads which are computed by the shared-memory BSP model.”

The paper presents a proof-of-concept BSPCloud parallel programming library implemented in java. The researchers use the BSPCloud library on matrix multiplication, while the performance predictability and speedup are evaluated in the cloud platform. The results show the speedup and scalability of BSPCloud in different configurations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire