Berkeley Lab Opens State-of-the-Art Facility for Computational Science

November 12, 2015

Nov. 12 — A new center for advancing computational science and networking at research institutions and universities across the country opened today at the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab).

Named Wang Hall, the facility will house the National Energy Research Scientific Computing Center, or NERSC, one of the world’s leading supercomputing centers for open science which serves nearly 6,000 researchers in the U.S. and abroad. Wang Hall will also be the center of operations for DOE’s Energy Sciences Network, or ESnet, the fastest network dedicated to science, connecting tens of thousands of scientists as they collaborate on solving some of the world’s biggest scientific challenges.

Complementing NERSC and ESnet in the facility will be research programs in applied mathematics and computer science that develop new methods for advancing scientific discovery. Researchers from UC Berkeley will also share space in Wang Hall as they collaborate with Berkeley Lab staff on computer science programs.

The 149,000 square foot facility built on a hillside overlooking the UC Berkeley campus and San Francisco Bay will house one of the most energy-efficient computing centers anywhere, tapping into the region’s mild climate to cool the supercomputers at the National Energy Research Scientific Computing Center (NERSC) and eliminating the need for mechanical cooling.

“With over 5,000 computational users each year, Berkeley Lab leads in providing scientific computing to the national energy and science user community. The dedication of Wang Hall for the computing program at Berkeley Lab will allow this community to continue to flourish,” said DOE Under Secretary for Science and Energy Lynn Orr.

Modern science increasingly relies on high performance computing to create models and simulate problems that are otherwise too big, too small, too fast, too slow or too expensive to study. Supercomputers are also used to analyze growing mountains of data generated by experiments at specialized facilities. High-speed networks are needed to move the scientific data, as well as allow distributed teams to share and analyze the same datasets.

Wang Hall is named in honor of Shyh Wang, a professor at UC Berkeley for 34 years who died in 1992. Well-known for his research in semiconductors, magnetic resonances and semiconductor lasers, which laid the foundation for optoelectronics, he supervised a number of students who are now well-known in their own right and authored two graduate-level textbooks, “Solid State Electronics” and “Fundamentals of Semi-conductor Theory and Device Physics.”

Solid state electronics, semiconductors and optical networks are at the core of the supercomputers at NERSC—which will be located on the second level of Wang Hall—and the networking routers and switches supporting the Energy Sciences Network (ESnet), both of which are managed by Berkeley Lab from Wang Hall. The Computational Research Division (CRD), which develops advanced mathematics and computing methods for research, will also have a presence in the building.

“Berkeley Lab is the most open, sharing, networked and connected National Lab, with over 10,000 visiting scientists using our facilities and leveraging our expertise each year, plus about 1,000 UC graduate students and postdocs actively involved in the Lab’s world-leading research,” said Berkeley Lab Director Paul Alivisatos. “Wang Hall will allow us to serve more scientists in the future, expanding this unique role we play in the national innovation ecosystem. The computational power housed in Wang Hall will be used to advance research that helps us better understand ourselves, our planet and our universe. When you couple the combined experience and expertise of our staff with leading-edge systems, you unlock amazing potential for solving the biggest scientific challenges.”

The $143 million structure, financed by the University of California, provides an open, collaborative environment bringing together nearly 300 staff members from three lab divisions and colleagues from UC Berkeley to encourage new ideas and new approaches to solving some of the nation’s biggest scientific challenges.

The first phase of Cori, NERSC’s new Cray XC40 supercomputer, has already been installed in Wang Hall.

“All of our University of California campuses rely on high performance computing for their scientific research,” said UC President Janet Napolitano. “The collaboration between UC Berkeley and Berkeley Lab to make this building happen will go a long ways towards advancing our knowledge of the world around us.”

The building features unique, large, open windows on the lowest level, facing west toward the Pacific Ocean, which will draw in natural air conditioning for the computing systems. Heat captured from those systems will in turn be used to heat the building. The building will house two leading-edge Cray supercomputers – Edison and Cori – which operate around the clock 52 weeks a year to keep up with the computing demands of users.

Wang Hall will be occupied by Berkeley Lab’s Computing Sciences organization, which comprises three divisions:

NERSC, the DOE Office of Science’s leading supercomputing center for open science. NERSC supports nearly 6,000 researchers at national laboratories and universities across the country. NERSC’s flagship computer is Edison, a Cray XC30 system capable of performing more than two quadrillion calculations per second. The first phase of Cori, a new Cray XC40 supercomputer designed for data-intensive science has already been installed in Wang Hall.

ESnet, which links 40 DOE sites across the country and scientists at universities and other research institutions via a 100 gigabits-per second backbone network. ESnet also connects researchers in the U.S. and Europe over connections with a combined capacity of 340 Gbps. To support the transition of NERSC from its 15-year home in downtown Oakland to Berkeley Lab, NERSC and ESnet have developed and deployed a 400 Gbps link for moving massive datasets. This is the first-ever 400 Gbps production network deployed by a research and education network.

The Computational Research Division, the center for one of DOE’s strongest research programs in applied mathematics and computer science, where more efficient computer architectures are developed alongside more effective algorithms and applications that help scientists make the most effective use of supercomputers and networks to tackle problems in energy, the environment and basic science.

About Berkeley Lab Computing Sciences

The Lawrence Berkeley National Laboratory (Berkeley Lab) Computing Sciences organization provides the computing and networking resources and expertise critical to advancing the Department of Energy’s research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe. ESnet, the Energy Sciences Network, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The National Energy Research Scientific Computing Center (NERSC) powers the discoveries of 6,000 scientists at national laboratories and universities, including those at Berkeley Lab’s Computational Research Division (CRD). CRD conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation.

About Berkeley Lab

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

Source: Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire