Brookhaven Lab Embarks Upon New Computational Science Initiative

October 22, 2014

UPTON, N.Y., Oct. 22 — Building on its capabilities in computational science and data management, the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory is embarking upon a major new Computational Science Initiative (CSI). This program will leverage computational science expertise and investments across multiple programs at the Laboratory-including the flagship facilities that attract thousands of scientific users each year-further establishing Brookhaven as a leader in tackling the “big data” challenges at the frontiers of scientific discovery. Key partners in this endeavor include nearby universities such as Columbia, Cornell, New York University, Stony Brook, and Yale, and IBM Research.

“Advances in computational science and management of large-scale scientific data developed at Brookhaven Lab have been a key factor in the success of the scientific programs at the Relativistic Heavy Ion Collider, the National Synchrotron Light Source, the Center for Functional Nanomaterials, and in biological, atmospheric, and energy systems science, as well as our collaborative participation in international research endeavors, such as the ATLAS experiment at Europe’s Large Hadron Collider,” said Robert Tribble, Brookhaven Lab’s Deputy Director for Science and Technology, who is leading the development of the new initiative. “The CSI will bring together under one umbrella the expertise that drives this success to foster cross-disciplinary collaboration and make optimal use of existing technologies, while also leading the development of new tools and methods that will benefit science both within and beyond the Laboratory.”

A centerpiece of the initiative will be a new Center for Data-Driven Discovery (C3D) that will serve as a focal point for this activity. Within the Laboratory it will drive the integration of intellectual, programmatic, and data/computational infrastructure with the goals of accelerating and expanding discovery by developing critical mass in key disciplines, enabling nimble response to new opportunities for discovery or collaboration, and ultimately integrating the tools and capabilities across the entire Laboratory into a single scientific resource. Outside the Laboratory C3D will serve as a focal point for recruiting, collaboration, and communication.

The people and capabilities of C3D are also integral to the success of Brookhaven’s key scientific facilities, including those named above, the new National Synchrotron Light Source II, and a possible future electron ion collider (EIC) at Brookhaven. Hundreds of scientists from Brookhaven and thousands of facility users from universities, industry, and other laboratories around the country and throughout the world will benefit from the capabilities developed by C3D personnel to make sense of the enormous volumes of data produced at these state-of-the-art research facilities.

The CSI in conjunction with C3D will also host a series of workshops/conferences and training sessions in high-performance computing-including annual workshops on extreme-scale data and scientific knowledge discovery, extreme-scale networking, and extreme-scale workflow for integrated science. These workshops will explore topics at the frontier of data-centric, high-performance computing, such as the combination of efficient methodologies and innovative computer systems and concepts to manage and analyze scientific data generated at high volumes and rates.

“The missions of C3D and the overall CSI are well aligned with the broad missions and goals of many agencies and industries, especially those of DOE’s Office of Science and its Advanced Scientific Computing Research program,” said Robert Harrison, who holds a joint appointment as director of Brookhaven Lab’s Computational Science Center and Stony Brook University’s Institute for Advanced Computational Science and is leading the creation of C3D.

The CSI at Brookhaven will specifically address the challenge of developing new tools and techniques to deliver on the promise of exascale science-the ability to compute at a rate of 1018 floating point operations per second (exaFLOPS), to handle the copious amount of data created by computational models and simulations, and to employ exascale computation to interpret and analyze exascale data anticipated from experiments in the near future.

“Without these tools, scientific results would remain hidden in the data generated by these simulations,” said Brookhaven computational scientist Michael McGuigan, who will be working on data visualization and simulation at C3D. “These tools will enable researchers to extract knowledge and share key findings.”

Through the initiative, Brookhaven will establish partnerships with leading universities, including Columbia, Cornell, Stony Brook, and Yale to tackle “big data” challenges.

“Many of these institutions are already focusing on data science as a key enabler to discovery,” Harrison said. “For example, Columbia University has formed the Institute for Data Sciences and Engineering with just that mission in mind.”

Computational scientists at Brookhaven will also seek to establish partnerships with industry. “As an example, partnerships with IBM have been successful in the past with co-design of the QCDOC and BlueGene computer architectures,” McGuigan said. “We anticipate more success with data-centric computer designs in the future.”

An area that may be of particular interest to industrial partners is how to interface big-data experimental problems (such as those that will be explored at NSLS-II, or in the fields of high-energy and nuclear physics) with high-performance computing using advanced network technologies. “The reality of ‘computing system on a chip’ technology opens the door to customizing high-performance network interface cards and application program interfaces (APIs) in amazing ways,” said Dantong Yu, a group leader and data scientist in the CSC.

“In addition, the development of asynchronous data access and transports based on remote direct memory access (RDMA) techniques and improvements in quality of service for network traffic could significantly lower the energy footprint for data processing while enhancing processing performance. Projects in this area would be highly amenable to industrial collaboration and lead to an expansion of our contributions beyond system and application development and designing programming algorithms into the new arena of exascale technology development,” Yu said.

“The overarching goal of this initiative will be to bring under one umbrella all the major data-centric activities of the Lab to greatly facilitate the sharing of ideas, leverage knowledge across disciplines, and attract the best data scientists to Brookhaven to help us advance data-centric, high-performance computing to support scientific discovery,” Tribble said. “This initiative will also greatly increase the visibility of the data science already being done at Brookhaven Lab and at its partner institutions.”

Source: Brookhaven National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire