Computing Model Could Lead to Quicker Advancements in Medical Research

November 13, 2013

BLACKSBURG, Va., Nov. 13 — With the promise of personalized and customized medicine, one extremely important tool for its success is the knowledge of a person’s unique genetic profile.

This personalized knowledge of one’s genetic profile has been facilitated by the advent of next-generation sequencing (NGS), where sequencing a genome, such as the human genome, has gone from costing $9 million to a mere $5,700. Now the research problem is no longer how to collect this information, but how to compute and analyze it.

“Overall, DNA sequencers in the life sciences are able to generate a terabyte — or 1 trillion bytes — of data a minute. This accumulation means the size of DNA sequence databases will increase 10-fold every 18 months,” said Wu Feng, a professor with the Department of Computer Science in the College of Engineering at Virginia Tech.

“In contrast, Moore’s Law (named after Intel co-founder Gordon E. Moore) implies that a processor’s capability to compute on such ‘BIG DATA’ increases by only two-fold every 24 months,” added Weng. “Clearly, the rate at which data is being generated is far outstripping a processor’s capability to compute on it. Hence the need exists for accessible large-scale computing with multiple processors … though the rate at which the number of processors needs to increase is doing so at an exponential rate.”

For the past two years, Feng has led a research team that has now created a new generation of efficient data management and analysis software for large-scale, data-intensive scientific applications in the cloud.

Cloud computing is a term coined by individuals in the computing field that in general describes a large number of connected computers located all over the world that can simultaneously run a program at a large scale. Feng announced his work in October at the O’Reilly Strata Conference + Hadoop World in New York City.

By background to Feng’s announcement, one needs to go back more than three years. In April 2010, the National Science Foundation teamed with Microsoft on a collaborative cloud computing agreement. One year later, they decided to fund 13 research projects to help researchers quickly integrate cloud technology into their research.

Feng was selected to lead one of these teams. His target was to develop an on-demand, cloud-computing model, using the Microsoft Azure cloud. It then evolved naturally to make use of the Microsoft’s Hadoop-based Azure HDInsight Service.

“Our goal was to keep up with the data deluge in the DNA sequencing space. Our result is that we are now analyzing data faster, and we are also analyzing it more intelligently,” Feng said.

With this analysis, and the ability of researchers from all over the globe to see the same sets of data, collaborative work is facilitated on a 24/7 global perspective. “This cooperative cloud computing solution allows life scientists and their institutions easy sharing of public data sets and helps facilitate large-scale collaborative research,” Feng added.

Think of the advantages of oncologists from Sloan Kettering to the German Cancer Research Center would have by maintaining simultaneous and instantaneous access to each other’s data.

Specifically, Feng and his team, Nabeel Mohamed of Chennai, Tamilnadu, India, and a master’s student, and Heshan Lin, a research scientist with Virginia Tech’s Department of Computer Science, developed two software-based research artifacts: SeqInCloud and CloudFlow.  They are members of the Synergy Lab, directed by Feng.

The first, an abbreviation for the words “sequencing in the clouds,” combined with the Microsoft cloud computing platform and infrastructure, provides a portable cloud solution for next-generation sequence analysis.  This resource optimizes data management, such as data partitioning and data transfer, to deliver better performance and resource use of cloud resources.

The second artifact, CloudFlow, is his team’s scaffolding for managing workflows, such as SeqInCloud.  A researcher can install this software to “allow the construction of pipelines that simultaneously use the client and the cloud resources for running the pipeline and automating data transfers,” Feng said.

“If this DNA data and associated resources are not shared, then life scientists and their institutions need to find the millions of dollars to establish and/or maintain their own supercomputing centers,” he added.

Feng knows about high-performance computing. In 2011, he was the main architect of a supercomputer called HokieSpeed.

That year, HokieSpeed settled in at No. 96 on the Top500 List, the industry-standard ranking of the world’s 500 fastest supercomputers. Its fame, however, came because of the machine’s energy efficiency, recorded as the highest-ranked commodity supercomputer in the United States in 2011 on the Green500 List, a compilation of supercomputers that excel at using less energy to do more.

Economics also was key in Feng’s supercomputing success. HokieSpeed was built for $1.4 million, a small fraction — one-tenth of a percent of the cost — of the Top500’s No. 1 supercomputer at the time, the K Computer from Japan. The majority of funding for HokieSpeed came from a $2 million National Science Foundation Major Research Instrumentation grant.

Feng also has been working in the biotechnology arena for quite some time. One of his key awards was the NVIDIA Foundation’s first worldwide research award for computing the cure for cancer.

This grant, also awarded in 2011, enabled Feng, the principal investigator, and his colleagues to create a client-based framework for faster genome analysis to make it easier for genomics researchers to identify mutations that are relevant to cancer.

Likewise, the more general SeqInCloud and CloudFlow artifacts seek to achieve the same type of advances and more, but via a cloud-based framework.

More recently, Feng was a member of a team that secured a $2 million grant from the National Science Foundation and the National Institutes of Health to develop core techniques that would enable researchers to innovatively leverage high-performance computing to analyze the data deluge of high-throughput DNA sequencing, also known as next-generation sequencing.

The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 6,000 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

—–

Source: Virginia Tech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire