NEC’s SX-ACE Vector Supercomputer Begins Operating at Osaka and Kyushu University

May 6, 2015

TOKYO, Japan, May 6 — NEC Corporation today announced that the SX-ACE vector supercomputers delivered to the Institute of Laser Engineering of Osaka University and the Research Institute for Applied Mechanics of Kyushu University have begun operating.

SX-ACE (for a maximum of eight racks)

The SX-ACE is highly suitable for scientific computing that requires super-high-speed parallel processing and advanced simulations using large-scale data. The Institute of Laser Engineering of Osaka University will use the product for explaining the laser plasma phenomenon in particular for theoretical physics research into nuclear fusion, which is expected to replace fossil fuels as a new energy source in the future. At the Research Institute for Applied Mechanics of Kyushu University, the SX-ACE will be used for high-performance simulations to solve a variety of mechanics challenges under the broad keywords of natural energy, including wind power, global environment, and nuclear fusion.

The SX-ACE is a new vector supercomputer equipped with a multi-core vector CPU, which enables the world’s top-level single-core performance of 64 GFLOPS and the largest memory bandwidth per core of 64 GB/s. Its performance per rack has improved 10 times over the previous model, with a rack computing performance of 16 teraFLOPS (hereinafter “TFLOPS”) and a memory bandwidth of 16 Tbytes/second. It is especially suited for scientific and engineering computing applications and data-intensive applications that need high-speed processing of big data. It achieves high-sustained performance in various simulations – for weather forecasting, analysis of global environmental changes, fluid-dynamics analysis, nanotechnology, development of new materials and others. Using NEC’s leading edge LSI technology, a high-density packaging design, and high-efficiency cooling technology, the SX-ACE also reduces power consumption by 90% and requires 20% of the floor space of the existing model.

The Institute of Laser Engineering of Osaka University (ILE) studies plasma science in extreme states such as ultra-high density and ultra-high temperature by using some of the world’s highest-level lasers, which it develops itself. The ILE advances research with the aim of creating new energies and substances and developing new interdisciplinary fields such as laser cosmic physics.

The SX-ACE with 32 nodes (maximum theoretical performance of 8.2 TFLOPS) introduced by ILE at this time will be used for simulation studies of plasma physics in cases where the targets are irradiated with high-intensity lasers. Above all, the use of the SX-ACE is expected to contribute to the explanation of phenomena through complicated electromagnetic radiation fluid simulations involving multiple scales and multiple physics.

“It is now possible to undertake high-speed computing of complicated codes with intricate numerical models, without a high level of tuning. Above all, compared to the previous machine, we have noticed a higher level of practical performance that cannot be expressed with catalog values alone. In addition, the power consumption is lower than we expected, so we hope that we will be able to reduce the cost of operations,” said Associate Professor Hideo Nagatomo of ILE.

Simulation of a laser implosion with a code for electromagnetic radiation fluid simulation

The Research Institute for Applied Mechanics of Kyushu University (RIAM) works on advanced issues related to mechanics and its applications. It cooperates with researchers from all over Japan and the world to solve problems regarding energy and the global environment, which are extremely important for mankind in the 21st century. The SX-ACE with 16 nodes (maximum theoretical performance of 4.1 TFLOPS) introduced by RIAM at this time is planned to be used for numerical assessments of wind conditions for introducing onshore/offshore wind turbines (atmospheric turbulence simulations), atmospheric environment simulations for predicting the impact of tiny particles blowing in, such as yellow sand and PM2.5, simulations for predicting oceanic conditions aimed at monitoring the oceanic environment or determining the causes of oceanic pollution, and other purposes.

“Large-scale, high-performance numerical assessments of wind conditions (atmospheric turbulence simulations) undertaken using supercomputers are essential for introducing and expanding onshore and offshore wind power generation in an appropriate manner in the future. The scrutiny of a vast quantity of simulation results will lead to the accurate location of local atmospheric turbulence fields, about which many aspects still remain unknown. Supercomputing technologies are not only contributing to academic research, they have also been found to be extremely promising in the wind power industry,” said Associate Professor Takanori Uchida of RIAM.

Atmospheric turbulence simulation in a complex topography

“Using our vector technology, NEC will examine the development of the next generation of high-performance servers targeting industrial application fields and big data analysis, in addition to conventional supercomputer fields, thereby leading the latest developments into the future,” said Tomoyasu Nishimura, General Manager, IT Platform Division, NEC Corporation.

Source: NEC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire