Researchers Use OLCF HPC Resources to Understand Subsurface Transport

September 9, 2015

Sept. 9 — Ask a geoscientist how he or she feels about the phrase, “out of sight, out of mind,” and you likely will meet some serious resistance. The scientist likely would explain that learning how different materials interact with one another below the Earth’s surface is of the utmost importance.

Indeed, a robust research community of theoreticians, experimentalists, and computational scientists has been collaborating to gain greater insight into how different states, or phases, of matter interact with one another when they are below ground.

“These fluid flows affect society because of our desire to mitigate climate change using carbon sequestration, to extract energy resources from the subsurface, and to remediate the effects of environmental contamination,” said James McClure, a computational scientist at Virginia Tech University.

Oil production, subsurface contamination, and carbon sequestration, among other research fields, share a common thread—they deal with multiphase flows, or situations where materials are flowing close together in different phases (solids, liquids, or gases). They also pertain to when the flow is composed of materials that have a common phase with a different chemical makeup that prevents mixing (such as oil and water).

McClure and his research team are using resources at the Oak Ridge Leadership Computing Facility (OLCF), a US Department of Energy (DOE) Office of Science User Facility located at DOE’s Oak Ridge National Laboratory, to improve understanding of transport phenomena in multiphase systems.

“To better understand the processes influencing multiphase flow, we rely on the synergistic application of theory, experiment, and computation,” McClure said. “We’re interested in the fundamental mechanisms that influence multiphase systems and how we can best represent these mechanisms, both mathematically and computationally, within a multiscale framework.”

Through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, the team has created detailed models for simulating two-phase flow systems and has produced a roadmap to efficiently simulate increasingly complex multiphase flows.

Between increased computing power and advances in experimental instruments, the team is gaining unprecedented insight into how materials interact in porous media such as soil.

“It is an exciting time to be studying multiphase problems,” McClure said. “New data acquisition technologies are transforming our understanding of geological materials. Recent theoretical breakthroughs can resolve problems that have existed for decades, and a massively parallel supercomputer like Titan allows us to simulate highly resolved systems at a scale that would have been far out of reach only a few years ago.”

McClure noted that experimental advances such as microcomputed tomography (micro-CT) have allowed researchers to observe the structure of geologic materials with micron-scale resolution. Simulations are essential to connect the experimentally generated data sets to models that describe flow processes at length scales of kilometers, as they are needed to make predictions for a wide range of systems that impact society.

“The most exciting problems across the sciences involve systems in which a process with a distinct length scale affects the behavior of the system when viewed on a much different scale,” McClure said. “Such so-called multiscale problems are extraordinarily difficult to solve because one must represent the effects of all smaller scale processes on the largest length scale of concern. Our research team has developed theory to help us better understand this multiscale problem for multiphase systems.”

The team’s current focus is to use experimental observations to evaluate, validate, and guide the refinement of models, such that the underlying processes are adequately resolved from the micrometer to the kilometer scale.

“That’s what we are really interested in doing,” McClure said. “We are not interested in one specific geologic system, but rather the basic theoretical approach that can be applied to a wide variety of applications. This sort of model development is essential to answer questions that arise when evaluating the efficacy of carbon sequestration at a given location or assessing the environmental risk resulting from hydraulic fracturing of porous medium systems.”

Experimental analyses on the fly

 Because the team members tackle a variety of multiphase transport problems, they require a versatile computational framework that can both simulate complex physics accurately and extract information that quantifies what really is happening.

The team uses its LBPM-WIA code, which stands for Lattice Boltzmann Methods for Porous Media with Internal Averaging. Lattice Boltzmann methods solve fluid transport equations, modeling the mass and momentum transport for multiphase flows that take place in complex geometries imaged using micro-CT.

The simulations are essentially four-dimensional, in that they map a geologic region in three spatial dimensions, while adding the temporal dimension of time. The team takes many snapshots during the simulations—roughly every 1,000 time steps. These snapshots capture the simulation’s phase at a particular point in time. The team typically requires millions of time steps per simulation to characterize the multiphase behavior within a particular media.

The Lattice Boltzmann method allows the team to maximize its code’s performance on the OLCF’s Cray XK7 Titan supercomputer. Much of Titan’s speed comes from NVIDIA Kepler GPUs, and Lattice Boltzmann calculations can take full advantage of those GPUs.

In fact, the ability to use GPUs has transformed the team’s simulations. McClure said that the team does its calculations entirely on Titan’s GPUs and uses the CPUs to do in situ (or real-time) data analyses on the machine.

OLCF computational scientist Mark Berrill helped optimize codes so that when running its largest simulations, the team can use Titan’s CPUs to analyze the data, then send the relevant data sets to the Rhea data-analysis cluster to visualize the results from simulations as they are generated.

This novel approach has allowed the team to churn through hundreds of terabytes of data without any need for post-processing, providing continuous information about the simulation state.

“Based on our theoretical work, we know what information we need from the simulation,” McClure said. “We perform the reduction of fine-scale detail to the desired measures of the system state as an integral part of the simulation and ultimately end up with reduced-sized output files that describe the system state that can be easily moved and archived.”

The approach is already yielding results. The team’s simulations performed on Titan have been instrumental in clarifying the role played by interfaces—the surface areas where two disparate substances meet in a two-phase system, such as where oil and water meet while flowing through a porous, spongy rock—in determining the behavior of these complex multi-scale systems. Analyzing the simulation state in situ enables unprecedented insight into how phases interact that could not otherwise be measured or observed.

Micro-CT imagery captures a snapshot of a geologic system, leaving experimentalists with a static image of a very dynamic process. Working with the OLCF, McClure has developed simulation tools that allow researchers to take the information from a three-dimensional micro-CT image and put it into motion.

With this approach, the team can study interfacial dynamics and other aspects of the system behavior quantitatively within a multiscale framework. The team can predict rocks’ properties—such as relative permeability—from first principles to measure the resistance to flow that controls the movement of fluids at the reservoir scale.

These results are vital for situations where the mobility of trapped, non-wetting phases—in this case, oil or liquid carbon dioxide—is of essential importance, such as carbon sequestration, oil recovery, and contaminant transport. There is much societal benefit to understanding the conditions under which these non-wetting phases can be removed from the subsurface rock or placed to reside permanently in rock.

The team places emphasis on simulating real systems observed with the most advanced experimental methods in existence and on comparing simulations to aspects of the theory that can be resolved and tested independently.

Each year, synchrotron light sources such as DOE’s National Synchrotron Light Source at Brookhaven National Laboratory are capable of generating larger and more well-resolved, three-dimensional image data of subsurface flows. Massively parallel computers such as Titan are indispensable to keep pace with these data sources—large computations are essential to fill in details that can’t be measured from experiments. Such information includes the fluid pressure and velocity fields, which are essential to advance theory and understanding.

“Using high-performance computation to model state-of-the-art experiments when viewed with the lens of recent theoretical advancements across a range of length scales and ultimately to represent systems with the heterogeneity of real geologic systems are the short- and long-term goals of this project,” McClure said.

As supercomputers get faster—such as the OLCF’s next-generation system, Summit, set for production runs in 2018—McClure thinks his team’s computational approach will readily scale with the computing power. “I’m really excited for Summit,” McClure said. “We can already use a significant fraction of Titan for production runs, and we don’t have a data analysis bottleneck in our code, which is a key attribute for scalable simulations.”

“As computational hardware, and methods and algorithms, improve, we will be able to address increasingly complicated problems at increasingly larger scales with the desired resolution. The end result will be a more mature understanding and higher fidelity representations of flow in real subsurface systems,” McClure said.

Source: Eric Gedenk, Oak Ridge National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire