Since 1986 - Covering the Fastest Computers in the World and the People Who Run Them

Language Flags
July 23, 2014

RIKEN Researchers Run 10,240 Parallel Simulations of Global Weather on K Computer

July 23 — Ensemble forecasting is a key part of weather forecasting today. Computers typically run multiple simulations, called ensembles, using slightly different initial conditions or assumptions, and then analyze them together to try to improve forecasts. Now, using Japan’s flagship 10-petaFLOPS K computer, researchers from the RIKEN Advanced Institute for Computational Science (AICS) have succeeded in running 10,240 parallel simulations of global weather, the largest number ever performed, using data assimilation to reduce the range of uncertainties.

The assimilation of the 10,240 ensemble data sets was made possible by a cross-disciplinary collaboration of data assimilation experts and eigenvalue solver scientists at RIKEN AICS. The “Local Ensemble Transform Kalman Filter” (LETKF), an already efficient system, was further improved by a factor of eight using the “EigenExa” high-performance eigenvalue solver software, making possible a three-week computation of data from the 10,240 ensembles for simulated global weather. By analyzing the 10,240 equally probable estimates of atmospheric states, the team discovered that faraway observations, even going beyond 10,000 kilometers in distance, may have an immediate impact on eventual state of the estimation. This finding suggests the need for further research on advanced methods that can make better use of faraway observations, as this could potentially lead to an improvement of weather forecasts.

The following three research projects funded by the Japan Science and Technology Agency (JST) CREST programs contributed to this achievement: 

“Innovating ‘Big Data Assimilation’ technology for revolutionizing very-short-range severe weather prediction” (led by Dr. Takemasa Miyoshi of RIKEN), a project in the research area of Advanced Application Technologies to Boost Big Data Utilization for Multiple-Field Scientific Discovery and Social Problem Solving (Research Supervisor: Prof. Yuzuru Tanaka of Hokkaido University)

“EBD: Extreme Big Data: Convergence of Big Data and HPC for Yottabyte Processing” (led by Prof. Satoshi Matsuoka of the Tokyo Institute of Technology with Dr. Takemasa Miyoshi of RIKEN acting as co-PI), which is a project in the Advanced Core Technologies for Big Data Integration area (Research Supervisor: Prof. Masaru Kitsuregawa of the National Institute of Informatics)

“Development of an Eigen-Supercomputing Engine using a Post-Petascale Hierarchical Model” (led by Prof. Tetsuya Sakurai of the University of Tsukuba with Dr. Toshiyuki Imamura of RIKEN acting as co-PI), a project in the Development of System Software Technologies for post-Peta Scale High Performance Computing (Research Supervisor: Dr. Akinori Yonezawa of RIKEN)

About RIKEN

RIKEN is Japan’s largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technology journals covering a broad spectrum of disciplines including physics, chemistry, biology, engineering, and medical science. RIKEN’s research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a worldwide reputation for scientific excellence. 

About AICS

AICS was established in July 2010 with the objective of establishing the science of forecasting based on computer simulation. To this end, AICS manages the operation of the K computer by maintaining a user-friendly environment and promoting collaborative projects with a focus on the disciplines of computational science and computer science. The K computer was pronounced the most powerful computer in the world in 2011 and has been available for shared use since the autumn of 2012. It is currently being used by researchers from both academia and industry in projects aiming to solve global issues and advance knowledge in fields such as drug development, disaster prevention, new materials and solar energy.

Source: RIKEN

SC14 Virtual Booth Tours

AMD SC14 video AMD Virtual Booth Tour @ SC14
Click to Play Video
Cray SC14 video Cray Virtual Booth Tour @ SC14
Click to Play Video
Datasite SC14 video DataSite and RedLine @ SC14
Click to Play Video
HP SC14 video HP Virtual Booth Tour @ SC14
Click to Play Video
IBM DCS3860 and Elastic Storage @ SC14 video IBM DCS3860 and Elastic Storage @ SC14
Click to Play Video
IBM Flash Storage
@ SC14 video IBM Flash Storage @ SC14  
Click to Play Video
IBM Platform @ SC14 video IBM Platform @ SC14
Click to Play Video
IBM Power Big Data SC14 video IBM Power Big Data @ SC14
Click to Play Video
Intel SC14 video Intel Virtual Booth Tour @ SC14
Click to Play Video
Lenovo SC14 video Lenovo Virtual Booth Tour @ SC14
Click to Play Video
Mellanox SC14 video Mellanox Virtual Booth Tour @ SC14
Click to Play Video
Panasas SC14 video Panasas Virtual Booth Tour @ SC14
Click to Play Video
Quanta SC14 video Quanta Virtual Booth Tour @ SC14
Click to Play Video
Seagate SC14 video Seagate Virtual Booth Tour @ SC14
Click to Play Video
Supermicro SC14 video Supermicro Virtual Booth Tour @ SC14
Click to Play Video