SDSC Awarded One-Year Extension for Gordon Supercomputer

August 26, 2015

Aug. 26 — The National Science Foundation (NSF) has awarded the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, a one-year extension to continue operating its Gordon supercomputer, providing continued access to the cluster for a wide range of researchers with data-intensive projects.

The result of a five-year, $20 million NSF grant awarded in late 2009, Gordon entered operations in early 2012 as one of the 50 fastest supercomputers in the world at the time – and the only one to employ massive amounts of flash-based memory, making it many times faster than conventional high-performance computing (HPC) systems for some data-intensive analyses.

With 300 trillion bytes of flash memory and 64 I/O nodes, Gordon is ideal for researchers who need to sift through tremendous amounts of data. In effect, Gordon was designed to do for scientific research what Google does for web searches. Learn more about Gordon’s full specifications on the SDSC HPC Systems webpage. By the end of 2014, 1,098 research projects using Gordon were awarded among 762 principal investigators at numerous academic institutions across the U.S. including UC San Diego and the UC system.

“We are delighted that Gordon will be available to researchers for another year, especially to those who are working in data-intensive domains such as social and political science, earth sciences, molecular biology and chemistry, genomics, and experimental high energy physics,” said SDSC Director Michael Norman, who also is the principal investigator for the Gordon supercomputer project. “Gordon has served the research community very well, and the NSF’s decision provides scientists continued access to what remains a state-of-the-art system.”

The one-year extension, until August 31, 2016, is being made possible through a combination of unspent funds and additional funding from the NSF. The extension will benefit researchers, the majority of whom access the system through the NSF’s XSEDE (eXtreme Science and Engineering Discovery Environment) program, which comprises the most advanced collection of integrated digital resources and services in the world.

“Extending Gordon provides a number of important benefits to XSEDE and its research community,” said Bob Sinkovits, director of the Scientific Applications Group in SDSC’s Data-Enabled Scientific Computing Division. “Gordon is a primary resource for several widely used Science Gateways that serve large communities of users. These include CIPRES, for phylogenetic inference; GridChem for computational chemistry; and UltraScan, for analysis of ultracentrifuge data. Gordon also hosts a number of novel projects ranging from the biomedical sciences to analysis of the Internet, which require persistent access to flash storage and are not currently handled by other XSEDE resources.”

Gordon to Support Dedicated I/O Node Projects

“Since Gordon was initially proposed and then configured as a data-intensive system rather than a traditional compute-intensive resource, we had significant latitude to explore alternate modes of allocation,” said Wayne Pfeiffer, SDSC Distinguished Scientist and Gordon Project Manager. “One of the most successful alternatives was to carve out small fractions of the system and offer them as dedicated resources to projects that could make effective use of Gordon’s solid state drives, or SSDs.”

Specifically, a typical allocation would involve a single I/O node plus some fraction of the compute nodes connected to the same switch. Below are two examples of how Gordon’s unique configuration enabled advances in significant large-scale, data-rich projects.

Particle Physics and the Search for Dark Matter

One dedicated I/O node project was also one of Gordon’s most data-intensive tasks: rapidly processing raw data from almost half a billion particle collisions as part of a project to help define the future research agenda for the Large Hadron Collider (LHC). After discovering the Higgs boson at the LHC, physicists now hope to find new particles that herald the presence of dark matter. To do so, they recently increased by several fold the data capture rate of the Compact Muon Solenoid (CMS), one of two large detectors attached to the LHC.

To help reduce the data backlog, 125 TB (terabytes) of data representing 400 million events were transferred to SDSC’s Gordon during a four-week period in 2013 and processed using 1.5 million core hours. The analysis pipeline was complex, involving compute nodes for event processing, a dedicated I/O node for serving 750 GB (gigabytes) of calibration data from flash memory, SDSC’s Data Oasis parallel file system running Lustre to stage the input and output, and a high-speed network to move data between SDSC, CMS, and the Open Science Grid.

Topographical Mapping and Analysis

The NSF-funded OpenTopography Facility provides efficient online access to high-resolution LIDAR (LIght Detection And Ranging) topography data, online processing tools, and derivative products. Users interact via the OpenTopography portal to sub-select LIDAR point cloud data and run processing algorithms on their area of interest to produce custom derivative products, such as digital elevation models (DEMs).

A performance benchmark using the local binning algorithm and a test case of 208 million LIDAR returns was run on a dedicated Gordon I/O node to compare performance with OpenTopography’s commodity clusters where the algorithm previously ran. Using this dedicated I/O node reduced run times of massive concurrent out-of-core processing jobs by a factor of 3x for single job access to a given data set, and by 20x for multiple concurrent jobs accessing that data set.

An XSEDE allocation of a dedicated Gordon I/O node and 16 compute nodes enabled the integration of compute-intensive algorithms such as the TauDEM hydrology suite into the OpenTopography workflow. “This capability has now been deployed on OpenTopography’s XSEDE-allocated resources on Gordon and is available to the wider earth sciences community via the OpenTopography portal, paving the way for new types of analysis on large topographic data sets,” said SDSC’s Pfeiffer.

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster, and are both part of the National Science Foundation’s XSEDE (eXtreme Science and Engineering Discovery Environment) program, the most advanced collection of integrated digital resources and services in the world.

Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire