Seven UW Projects Awarded Use of Cheyenne Supercomputer

February 11, 2016

Feb. 11 — Seven projects, many of which have applications to Wyoming issues — including wind farm efficiency, aerosol impacts on snowpack and snow melt, and cloud formation — were recently chosen to receive computational time and storage space on the supercomputer in Cheyenne.

University of Wyoming faculty members will lead projects that will use the NCAR-Wyoming Supercomputing Center (NWSC). Each project was critically reviewed by an external panel of experts and evaluated on the experimental design, computational effectiveness, efficiency of resource use, and broader impacts such as how the project involves both UW and NCAR researchers; strengthens UW’s research capacity; enhances UW’s computational programs; or involves research in a new or emerging field.

The Wyoming-NCAR Allocation Panel recently evaluated the large allocation requests to use computational resources at the NCAR-Wyoming Supercomputing Center, says Bryan Shader, UW’s special assistant to the vice president of research and economic development, and a professor of mathematics.

“The projects were granted allocations totaling 42 million core hours. In addition, 6 million core hours were recently awarded to a new faculty member as part of his start-up package,” he says.

Twenty-five UW-led projects used Yellowstone (the nickname for the supercomputer) in 2015, and this places Wyoming as the top university in total allocations, users and usage among all universities that use the NWSC.

Since the supercomputer came on line during October 2012, allocations have been made to 42 UW research projects, including these latest seven, which commenced this month.

The newest projects, with a brief description and principal investigators, are as follows:

1.) A project, titled “Climate Change Impacts on Precipitation and Snowpack in Wyoming Using a Dynamical Downscaling Method with CCSM Bias Corrections,” is funded by the UW Office of Water Program. This on-going project will use modeling to study how trends in regional climate affect precipitation, snowpack dynamics and stream flow in the headwaters region surrounding Wyoming.

Bart Geerts, a UW professor of atmospheric science, heads the project. Collaborators include Yonggang Wang, a UW post-doctoral scientist; Changhai Liu, from NCAR’s Research Applications Laboratory; and Xiaoqin Jing, a UW doctoral student.

2.) A project, titled “WRF Non-LES and LES Simulations of the Cloud Microphysical Effects of Ground-Based Glaciogenic Seeding of Orographic Clouds,” will study the impact of ice-crystal seeding on clouds and precipitation over mountains in the Interior West. The project will use data from a 2008-2014 seeding project in Wyoming, and the power of computational simulations to help guide an NSF-funded cloud seeding campaign to begin in early 2017.

Geerts also heads this project. Collaborators are Jeff French, a UW assistant professor of atmospheric science; Lulin Xue, a project scientist with NCAR’s Research Applications Lab; and Xiu Chu, a UW doctoral student.

The project is funded through an ongoing NSF grant with Roy Rasmussen and Dan Breed, both with NCAR; and a pending NSF grant with French and Robert Rauber, a professor and head of the Department of Atmospheric Sciences at the University of Illinois-Urbana Champaign.

3.) A project, titled “Surface Phase Behavior of Hydrocarbon Mixtures in Natural Mineral Media,” will look at oil production from both conventional and unconventional reservoirs, and how it can be highly dependent on mineral-fluid interfacial phenomena. This project will undertake a series of simulations aimed at elucidating hydrocarbon/mineral interactions under reservoir conditions with a focus on the effects of fluid composition, surface roughness, and brine salinity on dynamic surface wettability in carbonate systems.

Lamia Gaoul, an adjunct professor in UW’s School of Energy Resources (SER), leads the project. Collaborators are Mohammad Piri, the Wyoming Excellence Chair in Petroleum Engineering and a UW professor of petroleum engineering in the SER; and Will Welch, a post-doctoral researcher in petroleum engineering.

4.) A project, titled “Modeling Planet/Disk Interactions to Understand Planet Formation,” is motivated by the challenge to determine how exoplanets (that is, planets that orbit stars other than the sun) form. Disks of gases and debris around young stars hold vital clues to exoplanet formation. By creating a library of simulated images of a range of disks, Hannah Jang-Condell, a UW assistant professor of physics and astronomy, hopes to be able to determine properties of real disks by comparing capture images with simulated images.

Jang-Condell heads the project that is funded by the NASA Exoplanet Research Program.

5.) A project, titled “Effect of Microscale Phenomena on Macroscale Events,”will enable Zac Lebo, a new UW faculty member, to pursue his research on cloud systems. Cloud formation is one of the key components that governs Earth’s atmosphere. Yet, basic questions about cloud formation remain unanswered. Lebo, a UW assistant professor of atmospheric science, will develop models and algorithms to better understand how changes in objects and processes (aerosols and nucleation) that can’t be seen can influence phenomena – clouds and weather — that affect everyday life.

Project collaborators are Ben Shipway and Adrian Hill, both from the UK Meteorological Office; and Hugh Morrison from NCAR. The project is funded through start-up funds from UW’s Office of Research and Economic Development.

6.) A project, titled “High-Resolution Climate Simulations and Future Climate Projections in the Rocky Mountain Region (RMR) Using the Variable-Resolution CESM (VR-CESM),” will assess the performance of the variable-resolution NCAR Community Earth System Model (VR-CESM) in simulating the regional climate in the RMR. In addition, the role of deposition of absorbing aerosols (black carbon, organic carbon and dust) on snow, and the impact of future climate variations on the hydrologic cycles in the RMR, will be investigated.

Xiaohong Liu, the Wyoming Excellence Chair in Climate Science and a professor of atmospheric science, is the project leader. Collaborators are Geerts and Jianting “Julian” Zhu, a UW associate professor of civil engineering; Andrew Gettleman and Colin Zarxycki, both from NCAR; and UW doctoral students Chenglai Wu and Zheng Lu.

The project is funded through a College of Engineering and Applied Science grant.

7.) A project, titled “Computational Study of Wind Turbine Performance and Loading Response to Turbulent Atmospheric Inflow Conditions,” will allow a UW research team to further develop, validate and employ a suite of software tools and models to predict performance of wind farms consisting of hundreds to thousands of turbines. The models will account for spatial and temporal scales over eight orders of magnitude — from the continental scales that govern wind patterns to the thin boundary layers over the wind turbine blades.

Dimitri Mavriplis, a UW professor of mechanical engineering, is the project lead. Collaborators are Michael Stoellinger, a UW assistant professor of mechanical engineering; Tom Parish, department head and a UW professor of atmospheric science; and Jon Naughton, a UW professor of mechanical engineering.

Funding is provided through a U.S. Department of Energy grant secured by Naughton.

By the numbers

The most recent recommended allocations total 42 million core hours, 71 terabytes of storage space, 222 terabytes of archival storage, and 9,000 hours on data analysis and visualization systems, Shader says. To provide some perspective on what these numbers mean, here are some useful comparisons. In simplest terms, Yellowstone can be thought of as 72,567 personal computers that are cleverly interconnected to perform as one computer. The computational time allocated is equivalent to the use of the entire supercomputer for 13 days­, 24 hours a day. The 222 terabytes of storage would be enough to store the entire printed collection of the U.S. Library of Congress more than 20 times.

Yellowstone consists of about 70,000 processors, also known as cores. An allocation of one core hour allows a project to run one of these processors for one hour, or 1,000 of these for 1/1,000th of an hour.

A new supercomputer, dubbed Cheyenne, is expected to be operational at the beginning of 2017. The new high-performance computer will be a 5.34-petaflop system, meaning it can carry out 5.34 quadrillion calculations per second. It will be capable of more than 2.5 times the amount of scientific computing performed by Yellowstone.

The NWSC is the result of a partnership among the University Corporation for Atmospheric Research (UCAR), the operating entity for NCAR; UW; the state of Wyoming; Cheyenne LEADS; the Wyoming Business Council; and Cheyenne Light, Fuel & Power. The NWSC is operated by NCAR under sponsorship of the NSF.

The NWSC contains one of the world’s most powerful supercomputers dedicated to improving scientific understanding of climate change, severe weather, air quality and other vital atmospheric science and geo-science topics. The center also houses a premier data storage and archival facility that holds historical climate records and other information.

Source: University of Wyoming

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Leading Solution Providers

Contributors

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire