TACC’s Stampede Supercomputer Assists LIGO Research

December 4, 2014

Dec. 4 — Scientists since Albert Einstein have believed that when major galactic events like supernova explosions or black hole mergers occur in the universe, they leave a trace. That trace, it is believed, takes the form of gravitational waves, ripples in the curvature of space-time that propagate as a wave, travelling outward from the source.

For over a decade, scientists and engineers have engaged in one of the most ambitious research efforts ever undertaken: to design, build and operate the Laser Interferometer Gravitation Observatory (LIGO) to identify signs of gravitational waves.

From 2002 to 2010, hundreds of scientists worked together to bring the experiment to life. It required two gravitational wave observatories, 1,865 miles apart, working in unison: the LIGO Livingston Observatory in Livingston, Louisiana, and the LIGO Hanford Observatory, located near Richland, Washington. LIGO was developed and is managed by Caltech and MIT, and is funded by the National Science Foundation (NSF).

Since gravitational waves are expected to travel at the speed of light, the distance between the sites corresponds to a difference in arrival times of about ten milliseconds. By triangulating the signals, this small difference in detection can determine the source of the wave in the sky.

“Gravitational waves offer an unprecedented opportunity to see the universe from a new perspective, providing access to astrophysical insights that are available in no other way,” said Stuart Anderson, a research manager for LIGO based at Caltech.

To date, no waves have been detected. Yet most astronomers believe they’re still out there, waiting to be discovered if only we use the right tools. For that reason, the NSF, along with the UK Science and Technology Facilities Council, the German Max Planck Society, and the Australian Research Council, have supported the creation of a follow-up to LIGO called Advanced LIGO (ALIGO), which replaces the original detectors with ones more than 10 times more sensitive. ALIGO is expected to go online in 2015.

“Advanced LIGO’s goal is to pioneer a new field of Gravitational-wave Astronomy, and its planned sensitivity will allow this very significant step beyond first detections,” Anderson said. “The massive, relativistic constituents, causing violent perturbations of space-time itself, will be revealed through this unique probe.”

In addition to all of the astronomical considerations that must be attended to in a project like this – the placement of the observatories, the sensitivity of the detectors, the modeling of the expected signals – Advanced LIGO is also a “Big Data” problem.

The observatories take in huge volumes of data that then must be analyzed to determine their meaning. In the case of a positive identification of a gravitational wave candidate, this process must happen quickly, so the location of the waves can be identified and used for further study.

Among the many goals of the project was developing an offline system for binary neutron star and black hole detection, Anderson said. “We wanted to dig deeply into signals, since we have a good idea of what those signals are.”

Since gravitational waves are still in their theoretical infancy, scientists require additional information to learn about their existence. Combining observations of electromagnetic radiation, neutrinos or gravitational waves – a process known as multi-messenger astronomy – provides complementary information, but it makes a messy data problem even messier.

When they were planning Advanced LIGO, the researchers realized they needed more computing and data processing power than they had used previously. But how much more did they need? And where would it come from?

In moving to more a sensitive detector, they had to increase their computing needs by more than an order of magnitude. They estimated that ALIGO would generate more than one petabyte of data a year, the equivalent of 13.3 years of high-definition video.

Discussing the matter with program officers at the NSF, they decided to see if the Extreme Science and Engineering Discovery Environment (XSEDE) could help. XSEDE, another NSF-supported project, oversees the nation’s network of supercomputers and digital resources. These resources allow scientists to solve otherwise impossible computing problems and pursue really big science.

Perhaps it could do the same for Advanced LIGO.

Scientists from Caltech, Syracuse University and Abilene Christian University worked with computing experts at the Texas Advanced Computing Center (TACC) to develop and test new methods for transmitting and analyzing data with an eye towards Advanced LIGO’s future operations.

To achieve their goal, the team overlaid LIGO’s computing environment on top of the Stampede supercomputer at TACC, one of the most powerful in the world. They then used a tool called Condor to break their large computing problems into smaller parts that could be distributed and solved on individual nodes on the supercomputer. (A node consists of a number of processors connected together and to the larger system.) Miron Livney’s High Throughput Condor group at the University of Wisconsin-Madison provided critical support (including software updates) to allow this computational challenge to work, and the Advanced LIGO team was given priority access to the supercomputing queue, so their jobs could run efficiently with few interruptions.

At first, they used a data analysis code from the initial LIGO for the experiment, since it was easy to validate. However over time, they began using the new Advanced LIGO version of the analysis code. Through detailed benchmarking, they were able to verify the reliability of the process and provided the team with a preliminary sense of how much computing and data-crunching capability they needed to transmit, store and analyze data from the observatories for use by the astronomy community.

“The XSEDE and TACC teams where extremely helpful in collaborating on a successful port of a large scale LIGO data analysis pipeline to the Stampede system — all the way from network transfers of instrument data, through large scale number crunching, to generating and presenting web accessible scientific results,” Anderson said.

“The solution we implemented allowed individual LIGO data analysts to use their existing computer identities and software tools to quickly and efficiently leverage the Stampede computing resources. I am very excited by the possibility of using XSEDE resources to maximize the scientific reach of the Advanced LIGO experiment.”

Not only were the researchers able to prove they could compute on a big national supercomputer, in the process they ended up making the Advanced LIGO software four times more efficient, ultimately saving money and time.

“It was exciting to work as part of a multi-disciplinary team,” said Yaakoub El Khamra, a research engineer at TACC who worked on the project. “We were able to reproduce the answers from previous experiments and also took advantage of our local experts to speed up the LIGO codes. The effort was an unmitigated rousing success, something that no other supercomputing center could pull off.”

According to Peter Couvares, a computer scientist from Syracuse University who worked on the project, the experience showed LIGO researchers that large high-performance computing, or HPC, systems like Stampede can work as well as the high-throughput computing, or HTC, systems they were familiar with, which use a number of clusters distributed across LIGO Scientific Collaboration institutions.

“Given that our foremost computing challenge has always been to enable scientists to automatically and reliably execute large complex workflows consisting of millions of jobs and big data, NSF-supported tools like Condor and Pegasus have been invaluable,” Couvares said. “We’re increasingly realizing the value of HPC expertise at places like TACC to optimize our codes to make efficient use of shared XSEDE resources like Stampede.”

Borne out in tests run over the last few months, the results proved that using the nation’s supercomputers for gravitational wave analyses is feasible. In fact, in the end, the team was able to run more than 10,000 analysis jobs simultaneously on Stampede.

They presented their results at the HTCondor Week 2014 workshop in April.

“TACC staff not only got the LIGO team up and running on Stampede, they helped make the LIGO code substantially more efficient,” said TACC Executive Director Dan Stanzione. “Over the course of a year of computing with advanced LIGO, that could equate to millions of dollars in savings, or a huge increase in the amount of processing we can do on the same budget. This shows the value of software engineering being interjected into the process.”

Source: TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire