Optimizing Codes for Heterogeneous HPC Clusters Using OpenACC

July 3, 2017

Looking at the Top500 and Green500 ranks, one clearly realizes that most HPC systems are heterogeneous architecture using COTS (Commercial Off-The-Shelf) hardware, combining traditional multi-core CPUs with massively parallel accelerators, such as GPUs and MICs. With processor frequencies now hitting a solid wall, the only truly open avenue for riding today the Moore’s law is increasing hardware parallelism in several different ways: more computing nodes, more processors in each node, more cores within each processor, and longer vector instructions in each core. Read more…

Gen-Z Consortium Puts New High Performance Interconnect in Motion

October 12, 2016

Industry powerhouses have joined forces to address an issue that has confounded system architects since the advent of multicore computing, one that has gained in urgency with the rising tide of big data: the need to bring balance between processing power and data access. The Gen-Z Consortium has set out to create an open, high-performance semantic fabric interconnect... Read more…

On-Chip Device Accelerates Core-to-Core Communication

September 13, 2016

A team of engineers from North Carolina State University and Intel have joined forces to address on-chip communications bottlenecks that hamper performance scal Read more…

Report Addresses the Perils of Dark Silicon

July 21, 2016

Dark silicon refers to the processing potential that's lost when thermal constraints disallow full CPU utilization. The gap between transistor scaling and voltage scaling combined with tighter integration of components (multicore, SoCs) has power density ramifications that are of particular concern for embedded computing, but high-performance computing faces similar "dark power" challenges. Bringing attention to this issue and exploring common solutions was the goal of the Dagstuhl Seminar 16052, “Dark Silicon: From Embedded to HPC Systems.” Read more…

MIT’s Multicore Swarm Architecture Advances Ordered Parallelism

July 21, 2016

A relatively new architecture explicitly designed for parallelism – Swarm – based on work at MIT has shown promise for substantially speeding up classes of Read more…

James Reinders: Parallelism Has Crossed a Threshold

February 4, 2016

Is the parallel everything era here? What happens when you can assume parallel cores? In the second half of our in-depth interview, Intel's James Reinders discu Read more…

Processor Diversity on the Rise, Reports Intersect360

November 12, 2015

Intel x86 processors continue to dominate HPC servers while the number of cores per processor also keeps rising, perhaps no surprises there. Also somewhat antic Read more…

OpenACC Reviews Latest Developments and Future Plans

November 11, 2015

This week during the lead up to SC15 the OpenACC standards group announced several new developments including the release and ratification of the 2.5 version of Read more…

  • arrow
  • Click Here for More Headlines
  • arrow

Whitepaper

How Direct Liquid Cooling Improves Data Center Energy Efficiency

Data centers are experiencing increasing power consumption, space constraints and cooling demands due to the unprecedented computing power required by today’s chips and servers. HVAC cooling systems consume approximately 40% of a data center’s electricity. These systems traditionally use air conditioning, air handling and fans to cool the data center facility and IT equipment, ultimately resulting in high energy consumption and high carbon emissions. Data centers are moving to direct liquid cooled (DLC) systems to improve cooling efficiency thus lowering their PUE, operating expenses (OPEX) and carbon footprint.

This paper describes how CoolIT Systems (CoolIT) meets the need for improved energy efficiency in data centers and includes case studies that show how CoolIT’s DLC solutions improve energy efficiency, increase rack density, lower OPEX, and enable sustainability programs. CoolIT is the global market and innovation leader in scalable DLC solutions for the world’s most demanding computing environments. CoolIT’s end-to-end solutions meet the rising demand in cooling and the rising demand for energy efficiency.

Download Now

Sponsored by CoolIT

Whitepaper

Transforming Industrial and Automotive Manufacturing

Divergent Technologies developed a digital production system that can revolutionize automotive and industrial scale manufacturing. Divergent uses new manufacturing solutions and their Divergent Adaptive Production System (DAPS™) software to make vehicle manufacturing more efficient, less costly and decrease manufacturing waste by replacing existing design and production processes.

Divergent initially used on-premises workstations to run HPC simulations but faced challenges because their workstations could not achieve fast enough simulation times. Divergent also needed to free staff from managing the HPC system, CAE integration and IT update tasks.

Download Now

Sponsored by TotalCAE

Advanced Scale Career Development & Workforce Enhancement Center

Featured Advanced Scale Jobs:

SUBSCRIBE for monthly job listings and articles on HPC careers.

HPCwire Resource Library

HPCwire Product Showcase

Subscribe to the Monthly
Technology Product Showcase:

HPCwire