MIT Makes a Big Breakthrough in Nonsilicon Transistors

December 10, 2020

What if Silicon Valley moved beyond silicon? In the 80’s, Seymour Cray was asking the same question, delivering at Supercomputing 1988 a talk titled “What’s All This About Gallium Arsenide?” The supercomputing legend intended to make gallium arsenide (GaA) the material of the future... Read more…

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expe Read more…

MIT Researchers Build Carbon Nanotube Microprocessor

September 5, 2019

A years-long mission to build a microprocessor out of carbon nanotube transistors has finally succeeded thanks to a team of MIT researchers. The development comes as the sustainability of Moore’s Law is increasingly called into question. Silicon-based transistors are nearing the point when they will be unable to shrink anymore, delivering increasingly marginal improvements. Read more…

Researchers Advance Graphene’s Potential as Silicon Alternative

March 30, 2017

In the face of a slowing Moore's law for silicon-based CMOS technology, researchers are on the hunt for a successor to silicon. One of the more promising candid Read more…

Purdue Showcases New Concepts in Semiconducting

December 15, 2016

At the international IEDM 2016 conference earlier this month, Purdue University researchers revealed a number of technologies and concepts aimed at transformin Read more…

Report Addresses the Perils of Dark Silicon

July 21, 2016

Dark silicon refers to the processing potential that's lost when thermal constraints disallow full CPU utilization. The gap between transistor scaling and voltage scaling combined with tighter integration of components (multicore, SoCs) has power density ramifications that are of particular concern for embedded computing, but high-performance computing faces similar "dark power" challenges. Bringing attention to this issue and exploring common solutions was the goal of the Dagstuhl Seminar 16052, “Dark Silicon: From Embedded to HPC Systems.” Read more…

LBNL Researchers Report Method to Make “Atomically Thin” Circuits

July 14, 2016

This week researchers from Lawrence Berkeley National Laboratory have reported a new method to create transistors and circuits that are only a few atoms thick. Read more…

RISC-V Startup Aims to Democratize Custom Silicon

July 13, 2016

Momentum for open source hardware made a significant advance this week with the launch of startup SiFive and its open source chip platforms based on the RISC-V instruction set architecture. The founders of the fabless semiconductor company — Krste Asanovic, Andrew Waterman, and Yunsup Lee — invented the free and open RISC-V ISA at the University of California, Berkeley, six years ago. The progression of RISC-V and the launch of SiFive opens the door to a new way of chip building that skirts prohibitive licensing costs and lowers the barrier to entry... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow

Whitepaper

Transforming Industrial and Automotive Manufacturing

In this era, expansion in digital infrastructure capacity is inevitable. Parallel to this, climate change consciousness is also rising, making sustainability a mandatory part of the organization’s functioning. As computing workloads such as AI and HPC continue to surge, so does the energy consumption, posing environmental woes. IT departments within organizations have a crucial role in combating this challenge. They can significantly drive sustainable practices by influencing newer technologies and process adoption that aid in mitigating the effects of climate change.

While buying more sustainable IT solutions is an option, partnering with IT solutions providers, such and Lenovo and Intel, who are committed to sustainability and aiding customers in executing sustainability strategies is likely to be more impactful.

Learn how Lenovo and Intel, through their partnership, are strongly positioned to address this need with their innovations driving energy efficiency and environmental stewardship.

Download Now

Sponsored by Lenovo

Whitepaper

How Direct Liquid Cooling Improves Data Center Energy Efficiency

Data centers are experiencing increasing power consumption, space constraints and cooling demands due to the unprecedented computing power required by today’s chips and servers. HVAC cooling systems consume approximately 40% of a data center’s electricity. These systems traditionally use air conditioning, air handling and fans to cool the data center facility and IT equipment, ultimately resulting in high energy consumption and high carbon emissions. Data centers are moving to direct liquid cooled (DLC) systems to improve cooling efficiency thus lowering their PUE, operating expenses (OPEX) and carbon footprint.

This paper describes how CoolIT Systems (CoolIT) meets the need for improved energy efficiency in data centers and includes case studies that show how CoolIT’s DLC solutions improve energy efficiency, increase rack density, lower OPEX, and enable sustainability programs. CoolIT is the global market and innovation leader in scalable DLC solutions for the world’s most demanding computing environments. CoolIT’s end-to-end solutions meet the rising demand in cooling and the rising demand for energy efficiency.

Download Now

Sponsored by CoolIT

Advanced Scale Career Development & Workforce Enhancement Center

Featured Advanced Scale Jobs:

SUBSCRIBE for monthly job listings and articles on HPC careers.

HPCwire Resource Library

HPCwire Product Showcase

Subscribe to the Monthly
Technology Product Showcase:

HPCwire