SUPERCOMPUTERS HELP GET A GRIP ON AIDS

July 21, 2000

by Michael Schneider

Pittsburgh, PA. — Although AIDS awareness programs and research leading to powerful drugs such as AZT have reduced AIDS-related mortality, AIDS remains one of the most pressing U.S. public-health problems, with incidence rising in some areas and population groups. In less developed parts of the world, furthermore, AIDS is virtually out of control. In South Africa, AIDS infects a third of the current populace of 43 million, compared to under 1 percent here, and is the leading cause of death, with no abatement in sight.

Because of their high cost, the drug “cocktails” that control HIV, the virus that causes AIDS, have been of little use in Africa. Even at their most successful, furthermore, these drugs aren’t a cure-all. By retarding HIV’s ability to reproduce in humans, they save many lives, but the quest for AIDS researchers remains, as it has been, to find a cure – not just therapeutic agents that manage the disease, but a knockout punch.

Physicist Marcela Madrid of the Pittsburgh Supercomputing Center and Carnegie Mellon biologist Jonathan Lukin are contributing to this effort. Their computer simulations have revealed new understanding of an enzyme, HIV-1 reverse transcriptase (RT), that enters the body in the package of proteins and ribonucleic acid that comprise HIV. RT plays an essential role in reproducing the virus and because of this is an important target for drugs.

Madrid specializes in simulating biological molecules, and in 1998-99 she began collaborating on RT with a team of structural biologists. Because RT is a very large molecule, about 1,000 amino-acids, it hadn’t been simulated before, and Madrid’s effort, using PSC’s CRAY T3E, broke new ground. By providing a moving picture of RT, her work filled in details unavailable from the molecule’s static structure. Beyond this, her results went a long way toward showing that this kind of computer simulation, called molecular dynamics, can be a valuable partner with laboratory studies in furthering AIDS research.

With these simulations as groundwork, Madrid and Lukin this year took the next step: including water molecules that surround RT in the living cellular environment. This greatly expanded the computational demands of the project, challenging memory limitations of PSC’s CRAY T3E, and Madrid turned to the SGI Origin 2000 at the National Computational Science Alliance in Illinois. Their results from this recent work, which also relied partly on PSC’s Intel Cluster, offer fresh insight into the details of how this enzyme interacts with other molecules to reproduce the virus.

Like many viruses, HIV carries its genetic information as RNA, which is single-stranded and must be converted to double-stranded DNA before the virus can reproduce. This is where RT comes into play. The enzyme takes its name, reverse transcriptase, from what it does: It transcribes the RNA bases and one-at-a-time creates a complementary base to form the DNA version of HIV’s genome, from which it then creates a mirror-image strand and pastes them together to form the DNA double-helix. It’s “reverse” transcription because in most cells transcription goes the other direction – DNA to RNA. To some extent, this RT copy-and-paste process is understood, and to some extent it’s a mystery – especially the fine-grained details of the molecular manipulations.

What’s clear is if you find a foolproof way to stop RT from doing its job you will have cured AIDS. Several existing AIDS drugs work by binding to RT and blocking transcription. These therapies are less than fully effective, however, because HIV transcription is highly prone to error, giving the virus a protean ability to mutate and, thereby, to defeat drugs. It’s estimated that HIV can undergo as much genetic change in 10 years as the human species does over millions of years.

For this reason especially, researchers want to delineate the atom-by-atom picture of how RT transcribes RNA to DNA. A major step in this direction, and in AIDS research in general since the late 80s, has been to deduce the static structure of RT using x-ray crystallography. This work shows that the active domain of RT, where transcription takes place, is analogous to a hand, with subdomains that roughly represent a thumb, fingers and palm. Interestingly, two versions of this structure – one bound with DNA, one not – show a big difference: With DNA, the thumb is extended and open, making space for the DNA to fit into the palm; without DNA, the thumb is folded over to almost touch the fingers.

This difference was Madrid’s entry to HIV research. Her CRAY T3E simulations at PSC last year investigated whether removing the DNA from the open-thumb structure would cause the thumb to close. It did. Her molecular dynamics movie showed the open thumb closing to a position that agrees well with the closed-thumb crystal structure, indicating that closed thumb is the low-energy, “native-state” of RT. These simulations, furthermore, support thinking that RT’s movable thumb may be a key to the transcription process, allowing the enzyme to slide along the RNA strand as it adds bases one-by-one to form DNA.

Along with possibly being involved in transcription, the joint-like flexibility of the RT thumb may be a factor in how one class of AIDS drugs inhibits HIV reproduction, since it’s believed that these drugs lodge in the palm of RT and interfere with transcription by locking the thumb in an open position. “We want to understand RT’s flexibility,” says Madrid, “when it’s by itself, when it’s bound with DNA and when it’s bound with drugs.”

With this objective, Madrid and Lukin used the SGI Origin 2000 to simulate RT structures with and without DNA. The plan was to compare the fluctuations of each atom as shown in molecular dynamics movies to the crystal structures, which are derived by methods that deduce atomic position according to electron density, and therefore include a measure – called the crystallographic B-factor – that represents the uncertainty in the position of an atom, evidence for motion.

By adding 37,000 water molecules to immerse the RT molecule in a water bath, these simulations had a degree of realism missing from the prior study. The simulation with DNA included more than 130,000 atoms, a huge number for this kind of computation. For each of the two structures, the researchers simulated a nanosecond (billionth of a second) of dynamics, recording the atomic coordinates every half picosecond (trillionth of a second). To do this, they used 32 SGI Origin processors, with each computation requiring about 600 hours of computing.

For the structure without DNA, the results showed good correlation between the simulations and B-factors, giving confidence in the accuracy of the simulation. For the structure with DNA, the simulation showed greater flexibility in the tips of the thumb and fingers than suggested by the crystal structure, and also more flexibility than the structure without DNA.

This flexibility of the fingertips, says Madrid, is consistent with the difference in fingertip position between the RT crystal structure with DNA and another recently reported RT structure that includes a molecule, deoxynucleoside triphosphate, that elongates the DNA. “The movement in the fingers,” says Madrid, “tends to validate the postulate that the fingers open to let this molecule in and then close to trap it in place.”

This simulation showed, furthermore, that movements in different regions correlate with each other. The thumb and fingers and a binding pocket in the palm are moving at the same time – information that can’t be obtained experimentally. “This is the first time the motion of the whole molecule has been simulated in water,” says Madrid, “and we can see that the whole molecule is moving in a concerted manner.”

Though well short of a complete atomic-level solution to the HIV transcription process, this dynamic, detailed picture complements the crystal structures and pulls together much of the available information into a consistent whole, offering a blueprint for future work. In their next project, Madrid and Lukin plan to simulate RT structures that include drug molecules that inhibit transcription. “We’ll be looking for clues,” says Madrid, “to see how the drugs work.” More information is available at http://www.psc.edu/science/madrid2000.html .

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire