ELECTRON BLASPHEMY MAY SET PHYSICS ON ITS EAR

August 18, 2000

SCIENCE & ENGINEERING NEWS

San Francisco, CA — For a century, physicists have assumed that the electron – that subatomic workhorse of science and technology – is indivisible: You can’t chop it in half like a meatloaf. But as Keay Davidson reported for the San Francisco Examiner, that old wisdom may be dead wrong, judging by the puzzling results of experiments that have thrown the physics world into a tizzy.

Electrons may be divisible after all, reports leading physicist Humphrey Maris of Brown University. He bases his claim on experiments involving electrons trapped in bubbles that float through an eerie, super-cold substance called liquid helium.

Physicists have reacted to Maris’ claim with emotions ranging from amazement to bafflement to disbelief. “It’s fascinating. My immediate response was it’s not possible, but I’ve been wracking my brains for why it’s not possible and I’m not sure. I just don’t know one way or the other,” said Princeton University physicist Philip Anderson, co-winner of the 1977 Nobel Prize in physics.

If Maris’ theory is verified, then “it means that elementary particles are no longer what everybody thinks. It’s a major change,” says physicist Sebastien Balibar, director of research at the Ecole Normale SupÈrieure in Paris, who also is associated with Harvard University.

Without electrons, modern civilization would fall apart. These subatomic particles make possible innumerable gizmos from TVs to toasters and computers to camcorders. From coast to coast, Niagaras of electrons stream through electrical transmission lines.

In fact, without electrons, all matter – you and the surrounding Earth and universe – would dissolve like fog. Electrons are the primary electrical “glue” that binds atoms into molecules, the building blocks of visible reality.

The electron has been intensely scrutinized by physicists for the last century, ever since British scientist J.J. Thomson confirmed its existence and Caltech researcher Robert Millikan measured its minuscule electrical charge. Billions of taxpayers’ dollars have bankrolled giant particle accelerators that spin electrons about like angry bees, bashing into other particles and exposing their innards.

After all that hard work, physicists can’t be blamed for assuming that they had a pretty good idea what an electron is: the ultimate, indivisible, unsplittable “unit” of negative electrical charge.

There’s plenty at stake. According to the so-called “Standard Model” of physics – physicists’ version of the U.S. Constitution – the electron is one of the fundamental building blocks of matter. Matter supposedly comes in two broad classes: “quarks” (the building blocks of protons and neutrons, the guts of atomic nuclei), and “leptons” (the best-known being electrons).

All quarks and leptons are supposed to be indivisible. But Maris’ work suggests that at least one type of lepton, the electron, can be split. On this basis he suggests that other subatomic particles might also be divisible.

Maris first openly challenged the assumption that electrons are indivisible in June, when he reported his experimental findings at the “Quantum Fluids and Solids” conference in Minneapolis.

“Some in the audience believed him, others did not; all were interested in what he had to say,” said physicist Robert Hallock of the University of Massachusetts-Amherst in an e-mail interview with The Examiner. “His ideas are likely to be very controversial because they question what has been solid scientific belief about electrons and quantum physics for decades.”

At the meeting, “although he (Maris) received a lot of flak – a huge number of critical questions and objections – he stood his ground and, in my opinion, dealt effectively with them all,” said physicist P.V.E. McClintock of Lancaster University in England, who also attended.

Although Maris realizes he’s challenging scientific shibboleths, he has a sense of humor about it: “I’m not a crank physicist by any means – I’m a conservative old fuddy-duddy,” he said with a laugh. Still, if he’s right, his discovery would be “a pretty amazing thing for physicists . . . a radical change (in thinking).”

Maris has “a superb scientific reputation” and “the (scientific) stature to be taken seriously,” Hallock said. Anderson calls Maris “a highly respected person.” Ben Stein, a spokesman for the American Institute of Physics in Washington, called Maris “a distinguished and reputable physicist.”

In the early 20th century, scientists assumed electrons were distinct particles, like marbles. But reality is more complicated, as researchers showed in the 1920s. Back then, the concept of “quantum mechanics” was revolutionizing physics. Quantum mechanics held that on the subatomic level, matter and energy are “fuzzier” than they appear on the everyday, macroscopic level – the level of human beings, TVs, and toasters.

In seeming violation of common sense, matter and energy take on ghost-like qualities at the quantum scale: Particles move instantaneously from one place to the next in a random manner that can’t be predicted with classical rules of physics, only with statistics.

Indeed, an electron has a “wave function” – it’s less like a hard, indivisible particle than like a series of ripples on a pond. The ripples indicate where a single electron is statistically likely to materialize at any given moment. (It’s sort of like the gopher in the movie “Caddyshack” that momentarily pops its head up at the golf course, then a moment later pops up somewhere else, and so on.)

This notion of “electron waves” was first suggested in the 1920s by the French physicist-aristocrat Louis de Broglie, whose work Albert Einstein welcomed with near-religious praise: “He (de Broglie) has lifted a corner of the great veil.”

Bizarre though it seemed, de Broglie’s idea was readily verified in experiments by Bell Laboratories physicists C.J. Davisson and L.H. Germer, who subsequently shared the Nobel Prize in physics. (De Broglie won a separate Nobel.)

So when Maris says that an electron can be split, what he literally means is that the electron wave function can behave even more oddly than de Broglie, Davisson and Germer thought: Literally, the electron “waves” can be split apart, over an unknown distance – at least a few feet apart.

In effect, one moment an electron can be at point A, then instantaneously reappear at Point B a few feet away, as if “teleporting,” to use “Star Trek” lingo, between the two points.

Maris’ theory relates to lab experiments that involve a frigid vat of liquid helium. This is a liquefied form of the second-lightest element, helium. Inside the vat, he generates electron “bubbles,” each one hundred-billionths of an inch wide.

His theory predicts that these bubbles can be divided into smaller bubbles, each containing a part of the “wave function” of the electron. In the process, he appears to have split individual electrons into fragments, although this clearly violates the Standard Model of physics. He calls the electron fragments “electrinos.”

Is Maris right? Is fundamental physics due for an overhaul? Or will future historians of science remember him as one of many esteemed-but-wrong researchers who thought they had overturned, or at least shaken, Mother Nature’s apple cart?

“He may be wrong, and many do not accept what he has proposed,” Hallock said. “Others, including me, have some questions about what he has proposed, but accept the ideas as interesting, potentially very exciting, and look forward to the experimental tests that should enhance our understanding and ultimately test whether Humphrey is right or not.”

If validated, does Maris’ work offer practical applications? It’s too early to say, but he suggests that the ability to split electrons might lead to faster microchips, semiconductors and computers – exactly how, he can’t be sure.

In any case, Maris’ work reinforces Einstein’s famous crack that reality is not only weirder than we imagine, but perhaps weirder than we can imagine. As Maris observes, that’s why physicists, when asked by lay people to explain what is “really” going on at the subatomic level, may sound more like philosophers than scientists.

As Maris says with a laugh: “It’s a little bit like President Clinton saying, ‘It depends what you really mean by is.’ ”

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire